

Pode o caulim proteger sementes de amendoim contra a ataque de *Tribolium castaneum*?

Can kaolin protect peanut seeds against Tribolium castaneum attack?

SILVA, Dayane Gomes¹; ALMEIDA, Raul Porfirio de²
¹Estagiária/Embrapa Algodão, ane-dgomes@hotmail.com; ²Embrapa Algodão, raul.almeida@embrapa.br

Tema gerador: Agroecologia e Agriculturas Urbana e Periurbana

Resumo

Este trabalho objetivou avaliar a ação do caulim no revestimento de sementes de amendoim cultivar BR1 sobre *Tribolium castaneum* (Coleoptera: Tenebrionidade). Esta pesquisa foi conduzida no Laboratório de Entomologia da Embrapa Algodão. Foram utilizados 120 insetos adultos por tratamento. As avaliações foram feitas a intervalos de dois dias até o 15º dia. As variáveis analisadas foram o número de insetos mortos e de sementes perfuradas. Os tratamentos estudados foram as concentrações de caulim (1, 2, 3, 4 e 5%) e uma Testemunha (0%), com quatro repetições. Foram avaliados a mortalidade cumulativa e o percentual de sementes perfuradas. A Eficiência (E%) foi calculada pelo método de Abbott (1925). Os danos variaram de 8,59 a 12,50% nos tratamentos com caulim e de 17,19% na Testemunha. O caulim não foi eficiente em proteger as sementes de amendoim contra o ataque de *T. castaneum*, nem inibiu a capacidade dos insetos em causar injúrias.

Palavras-chave: tratamento de sementes; filme de partículas; besouro-castanho.

Abstract

This work aimed evaluating kaolin action on seed coating of peanut cultivar BR1 on *Tribolium castaneum* (Coleoptera: Tenebrionidade). This research was carried out at the Entomology Laboratory at the Embrapa Cotton. One hundred adult insects per treatment were used. Eight evaluations at two days interval until the 15th day were accomplished. Variables were dead insects and punched seeds number. Treatments were different kaolin concentrations (1, 2, 3, 4 and 5%) and the Control (non-treated seeds), replicate four times. *T. castaneum* cumulative mortality and the punched seeds percentage was evaluated. The efficiency was calculated by Abbott method (1925). Damages varied from 8.59 to 12.50% in treatments with kaolin and of 17.19% in the control. The caulim was not efficient in protecting peanut seed against *T. castaneum* attack and did not inhibited the insect's capacity in causing injuries.

Keywords: seed's treatment; particles film; lesser mealworm.

Introdução

As perdas de grãos no armazenamento no Brasil atingiram um índice de 10%, ou seja, cerca de 9,8 milhões de toneladas na safra 2000/2001 (Instituto Brasileiro de Geografia e Estatística, 2016). Dentre os fatores limitantes, os insetos-praga dos produtos armazenados ao se alimentarem dos grãos provocam furos, perdas de peso, resíduos, além de alterações na composição química, redução no percentual de germinação e vigor das sementes e, consequentemente, um menor valor comercial (Almeida, 1989).

VI CONGRESSO LATINO-AMERICANO X CONGRESSO BRASILERO V SEMINÁRIO DO DE E ENTORNO 12-15 SETEMBRO 2017 BRASÍLIA- DE BRASIL

Em amendoim, a espécie *Tribolium castaneum* (Herbst) (Coleoptera: Tenebrionidae) é considerada uma praga secundária, podendo sobreviver também em grãos não danificados (White, 1982). Este inseto desenvolve-se nas massas de grãos com alto teor de impurezas e grãos quebrados, danificados pelo manuseio mecanizado durante os processos de colheita, secagem e armazenamento (Sokoloff, 1974).

Entre as alternativas ao uso de agrotóxicos, o caulim tem sido relatado por sua eficiência contra coleópteros (Showler, 2002). O Brasil detém a segunda maior reserva internacional de caulim (28%) (Wilson, 2005), com os principais depósitos localizados nos estados do Pará, Amapá, Amazonas, São Paulo, Minas Gerais e Bahia. É um mineral composto de silicato de alumínio (Al4 Si4 O10 [OH] 8), que apresenta um grão fino de cor branca, achatado, poroso, não expansivo e não abrasivo que se dispersa em água e é quimicamente inerte em amplo espectro de pH (Harben, 1995). É classificado pela Environmental Protection Agency (EPA) como pesticida de risco reduzido, pelas suas características de baixa toxicidade para seres humanos e organismos não-alvo (Garcia et al., 2003). Desta forma, o objetivo de trabalho foi avaliar a eficiência do Caulim em recobrimento de sementes de amendoim para o controle *Tribolium castaneum*.

Metodologia

Este trabalho foi conduzido no Laboratório de Entomologia da Embrapa Algodão, Campina Grande, Paraíba, sob condições de ambiente climatizado, a temperatura média de $28,0\pm2,0^{\circ}$ C e umidade relativa do ar de $60,0\pm5,0$ %. Insetos adultos de *T. castaneum* foram coletados em amendoim cultivar BR-1 produzido em Petrolândia, PE e multiplicados em laboratório. Para o tratamento de sementes utilizou-se o caulim adquirido em indústria de produção de pós de rocha.

Para realização do bioensaio, sementes de amendoim cultivar BR1 foram tratadas com caulim em diferentes concentrações (peso/peso) e testadas sob condições de armazenamento. Os tratamentos avaliados foram caulim nas concentrações a 1, 2, 3, 4 e 5% e uma Testemunha (sementes não tratadas), com quatro repetições. A unidade experimental foi constituída por um recipiente de plástico (5,0 cm de largura x 5,0 cm de altura) contendo 15 g de sementes de amendoim. Para cada repetição foram utilizados 30 insetos de *T. castaneum*, não sexados. Foram realizadas oito avaliações em intervalos de dois dias, totalizando 15 dias, sendo avaliado o número de insetos mortos e o número de sementes perfuradas (injúrias > 1,0 mm de profundidade). Para análise dos dados avaliou-se a mortalidade cumulativa (120 insetos/tratamento) e o percentual de sementes perfuradas. A Eficiência (E%) do caulim sobre *T. castaneum* foi calculada utilizando-se o método de Abbott (1925).

Resultados e discussão

Na Figura 1, é apresentada a mortalidade cumulativa dos insetos adultos de *T. castaneum* em sementes de amendoim. De modo geral, verificou-se comportamento de mortalidade ascendente para todos os tratamentos. A mortalidade, ao final das avaliações (15 dias), considerando-se todas as concentrações de caulim estudadas, variou de 30 a 45 indivíduos de um total de 120 insetos por tratamento, verificando-se que, em nenhum dos casos, atingiu a metade da população estudada. Na Testemunha, o número de insetos mortos não foi maior que 10 indivíduos.

A eficiência de controle do caulim foi baixa para todas as concentrações. Até o 9º dia, os valores das eficiências obtidas foram crescentes, com taxa média de aumento no tempo de 2,74. A partir deste período até o 15º dia, o crescimento da eficiência foi menor (1,19), não ultrapassando 31,82% de eficiência (Tabela 1).

Figura 1 – Mortalidade cumulativa de T. castaneum submetidos a diferentes concentrações de Caulim. Campina Grande, PB, 2017.

Os insetos ocasionaram perfurações nas sementes de amendoim em todas as concentrações de caulim utilizadas, com danos que variam de 8,49 a 12,50%. Na Testemunha os danos foram de 17,19%, ou seja, duas vezes maior que para o tratamento de caulim a 5% e 1,38 maior que o tratamento a 2%. O caulim, em nenhum dos tratamentos inibiu que os insetos se alimentassem, não conferindo, consequentemente, proteção as sementes armazenadas de amendoim tratadas (Tabela 1).

VI CONGRESSO LATINO-AMERICANO X CONGRESSO BRASILEIRO V SEMINÁRIO DO DE E ENTORNO 12-15 SETEMBRO 2017 BRASÍLIA- DE BRASIL

Tabela 1 – Eficiência (E%)¹ de controle de *Caulim* sobre *T. castaneum*. Campina Grande, PB, 2017.

Tratamento	Avaliação								- % SP²
	1°.	3°.	5°.	7 °.	9°.	11°.	13°.	15°.	- /0 JP-
Test. (0%)	-	-	-	-	-	-	-	-	17,19
1%	0,85	9,40	23,08	28,45	29,82	32,46	32,43	31,82	9,38
2%	0,00	2,56	9,40	18,97	28,07	29,82	28,83	31,82	12,50
3%	0,00	4,27	8,55	12,93	14,04	15,79	13,51	18,18	11,72
4%	0,00	5,13	12,82	19,83	20,18	22,81	21,62	23,64	9,38
5%	0,00	5,98	19,66	24,14	23,68	23,68	25,23	28,18	8,59

¹Eficiência calculada pelo método de Abbott (1925).

Conclusão

O caulim não foi eficiente em proteger as sementes de amendoim contra o ataque de *T. castaneum*, nem evitou, em nenhuma das concentrações estudadas, que os insetos se alimentassem.

Referências Bibliográficas

ABBOTT, W. S. A method of computing the effectiveness of an insecticide. *Journal of Economic Entomology*, v.18, p.265-267, 1925.

ALMEIDA, A. de. Natureza dos danos causados por insetos de grãos armazenados. In: SEMINÁRIO SOBRE CONTROLE DE INSETOS, 4. 1989, Campinas, **Anais...** Campinas: Fundação Cargill, p. 16-32, 1989.

GARCIA, M.E.; BERKETT, L.P.; BRADSHAW, T. Does Surround® have non-target impacts on New England orchards? p. 35-39. In W.J. Bramlage (ed.), New England Fruit Meetings 2002-2003.Massachusetts Fruit Growers' Association, Inc. in cooperation with the New England University Cooperative Extensions, North Amherst, 73p. 2003.

HARBEN, P.W. *The industrial minerals handbook II: a guide to markers, specifications, and rices.* Arby Industrial Mineral Division Metal Bulletin.PLC, London. 1995.

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA – IBGE. Indicadores Agropecuários 1996-2003. http://ibge.gov.br/home/estatistica/economia/agropecuária/indicadoresagro_19962003/default.shtm. Acesso em 25/05/2016.

²SP - Sementes perfuradas (15 dias).

VI CONGRESSO LATINO-AMERICANO X CONGRESSO BRASILEIRO V SEMINÁRIO DO DE E ENTORNO 12-15 SETEMBRO 2017 BRASÍLIA- DE BRASIL

SHOWLER, A.T. Effects of kaolin particle film on beet armyworm, Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae), oviposition, larval feeding and development on cotton, *Gossypium hirsutum* L. *Agriculture, Ecosystems and Environment*, v. 95, p. 265-271, 2003.

SOKOLOFF, A. *The biology of Tribolium*. Oxford: Oxford University Press, v.2. 1974. 610p.

WHITE, G.G. The effect of grain damage on development in wheat of *Tribolium castaneum* (Herbst) (Coleoptera: Tenebrionidae). *Journal of Stored Product Research*, v.187, p.115-119, 1982.

WILSON, I.R. Kaolin Review. Mining Annual Review for 2004. 2005.