

Desenvolvimento inicial e qualidade de mudas de *Carapa guianensis* Aubl. cultivada com diferentes doses de esterco bovino e calagem.

Initial development and seedling quality of Carapa guianensis Aubl. cultivated with different levels of bovine manure and liming.

RODRIGUES, Sharon R.¹; CARNEVALI, Thiago O.¹; SANTOS, Dhyene¹; CARNEVALI, Natalia H. S.²; RAMOS, Diovany D.³

¹ UFPA, sharonroserodrigues00@gmail.com, carnevali@ufpa.br, drayneagro@gmail.com; ² UNIFESSPA, nataliahilgert@unifesspa.edu.br; ³ UFMS, diovany3@hotmail.com

Eixo temático: Manejo de Agroecossistemas de Base ecológica

Resumo: Objetivou-se com este trabalho avaliar o desenvolvimento inicial e qualidade de mudas de *Carapa guianensis* cultivada com diferentes doses de esterco bovino e calagem. O trabalho foi conduzido em Altamira, PA. Foram estudados quatro doses de esterco bovino (0, 15, 30 e 45 t ha⁻¹) e quatro doses de calcário dolomítico (0, 2, 4 e 6 t ha⁻¹, PRNT 80%), arranjado em esquema fatorial 4x4, no delineamento experimental blocos casualizados. Todas as características avaliadas foram influenciadas pelas doses de esterco bovino e calcário. De modo geral, as doses de 45 t ha⁻¹ de esterco e 6 t ha⁻¹ de calcário proporcionaram maior crescimento e produção de biomassa de plantas e maior índice de qualidade Dickson.

Palavras-chave: Amazônia, andiroba, planta medicinal.

Keywords: Amazon, andiroba, medicinal plant.

Abstract: The objective of this work was to evaluate the initial development and quality of *Carapa guianensis* cultivated with different levels of bovine manure and liming. The work was conducted in Altamira, PA. Four levels of bovine manure (0, 15, 30 and 45 t ha⁻¹) and four levels of dolomitic limestone (0, 2, 4 and 6 t ha⁻¹, 80% PRNT), arranged in a 4x4 factorial scheme, in the randomized complete block design. All evaluated characteristics were influenced by the doses of bovine manure and limestone. In general, the doses of 45 t ha⁻¹ of manure and 6 t ha⁻¹ of limestone provided higher growth and yield of plant biomass and higher Dickson quality index.

Introdução

A andiroba (*Carapa guianensis* Aubl., Meliaceae) é uma espécie arbórea, nativa da Amazônia, que pode atingir até 30 m de altura, comum nas áreas de várzeas, apresenta fuste reto e cilíndrico com casca amarga e que se desprende facilmente, tem folhas compostas na cor verde-escura e frutos do tipo cápsula ovóide deiscente (LORENZI, 2002; FREITAS et al., 2011). Possui grande potencial econômico da sua madeira de excelente qualidade e pela utilização do óleo extraído de suas sementes (FERRAZ et al., 2002).

A espécie faz parte das 71 espécies de Plantas Medicinais com potencial terapêutico de interesse ao Sistema Único de Saúde (NASCIMENTO JÚNIOR et al., 2009), e que segundo o conhecimento popular o óleo extraído da semente é protetor solar,

anti-inflamatório, antitumoral e a casca e a folha servem contra reumatismo, tosse, gripe, pneumonia e depressão (FERRAZ et al., 2002).

Na literatura, há poucos relatos sobre o modo de cultivo da espécie, sendo o mais utilizado o de Souza et al. (2006) que relata algumas práticas gerais a serem utilizadas, no entanto, não apresenta dados experimentais de produção de mudas e frutos.

O uso de resíduos orgânicos é uma prática muito comum na agricultura, pois a matéria orgânica contém vários nutrientes como N, P e K, promove maior capacidade de retenção de água no solo, melhora a estrutura, a aeração e a capacidade de ativar processos microbianos do solo (KIEHL, 2008). Além do uso de resíduos orgânicos a calagem é uma prática comum no cultivo de plantas, ela influencia na elevação do pH, redução do alumínio trocável, fornecendo cálcio e magnésio, aumentando a disponibilidade de nitrogênio, fósforo e potássio, melhorando a eficiência de uso dos nutrientes e da água no solo (RAIJ, 2011).

Leite et al. (2013) afirmam que uso de esterco bovino ou cama de frango incrementam a produção de biomassa de mudas de andiroba, no entanto, ainda falta informações sobre quais doses de esterco bovino e calagem devem ser utilizadas para proporcionar maior produção de biomassa e qualidade de mudas. Assim objetivou-se com este trabalho avaliar o desenvolvimento inicial e qualidade de mudas de *Carapa guianensis* sob o uso de diferentes doses de esterco bovino e calagem.

Metodologia

O trabalho foi conduzido em Altamira, PA em ambiente protegido com 50% de luminosidade. O clima do município caracteriza-se como tropical úmido (Köppen), apresentando temperatura média de 27°C e precipitação anual de 2200 mm. Os frutos foram coletados de plantas matrizes (3°16'13.62"S; 52°23'43.92"W), retiradas as sementes e semeadas em substrato composto de substrato Bioplant® + solo, na proporção de 1:1 (v/v). Quando as plantas atingiram 15 cm de altura, foram transplantadas unitariamente para vasos plásticos de 2 dm³.

Foram estudadas quatro doses de esterco bovino (0, 15, 30 e 45 t ha⁻¹) e quatro doses de calcário dolomítico (0, 2, 4 e 6 t ha⁻¹, PRNT 80%). Arranjados em esquema fatorial 4x4, no delineamento experimental de blocos casualizados, com quatro repetições e unidade experimental de 4 vasos. O esterco bovino e o calcário foram incorporados manualmente e após 30 dias foi realizado o transplante das plantas. Foi utilizado um Latossolo Vermelho eutrófico, coletado do horizonte B, com os seguintes atributos químicos antes da calagem, determinados conforme Silva et al. (2009): pH em CaCl₂= 5,5; P= 3,0 mg dm⁻³; Ca= 0,51 cmol_c dm⁻³; K= 0,05 cmol_c dm⁻³; Mg= 0,46 cmol_c dm⁻³; Al= 0,1 cmol_c dm⁻³; H+Al= 2,5 cmol_c dm⁻³; SB= 8,93 cmol_c dm⁻³; T= 3,52 cmol_c dm⁻³ e V%= 28,9 e M.O.= 8,2 g kg⁻¹.

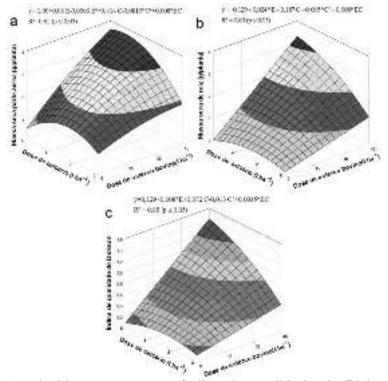
Aos 160 dias após a emergência, todas as plantas foram colhidas e avaliadas quanto: a) altura da parte aérea (cm); b) diâmetro do caule (mm), utilizando-se um paquímetro digital com precisão de 0,01 mm; c) número de folhas; d) comprimento da raiz (cm) e) massa seca da parte aérea e raiz (gramas), determinadas em estufa de circulação forçada a 60°±5°C, até massa constante; f) área foliar e radicular (cm²); g) RAD: relação altura da parte aérea com o diâmetro do caule; h) RPAR: relação da matéria seca da parte aérea com a matéria seca de raízes; i) IQD: índice de qualidade de Dickson obtido pela fórmula; IQD = [matéria seca total/(RAD+RPAR)] (DICKSON et al., 1960).

Os dados foram submetidos à análise de variância pelo teste F e quando significativos, foram analisados por meio de análise de regressão, todos até 5% de probabilidade. Posteriormente foram elaborados os gráficos de superfície de resposta.

Resultados e Discussão

As características das mudas foram influenciadas pelas doses de esterco bovino e calcário. De modo geral, as características diâmetro do caule, número de folhas, comprimento de raiz, clorofila a, área radicular e relação parte aérea raiz foram mais sensíveis as doses de esterco bovino e de calagem (Tabela 1).

Tabela 1. Crescimento de mudas de andiroba cultivada com diferentes doses de esterco bovino e calcário, 2018.


Característica	Equação	R ^{2(#)}	Teor máximo	Dose determinante (t ha ⁻¹)	
				Esterco bovino	Calcário
Altura de planta (cm)	ŷ=28,31-0,13*E+0,006*E ² +3,18*C- 0,47*C ² +0,06 EC-0,001 E ² C	0,76	34,78	10,83	3,37
Diâmetro do caule (mm)	ŷ=7,310+0,064*E-0,001*E ² -0,116 C+0,005 EC	0,53	8,60	32,00	6,00
Número de folhas	ŷ=6,853+0,204*E-0,006 C-0,001 EC	0,47	15,73	45,00	6,00
Comprimento de raiz (cm)	Não houve ajuste	-	19,33	45,00	6,00
Clorofila A (Spad)	ŷ=17,343+0,205 E-0,0009 E ² +0,80 C- 0,099 C ²	0,61	22,13	25,63	0,16
Clorofila B (Spad)	ŷ=4,716-0,005 E+0,004 E ² +0,975 C- 0,193 C ²	0,50	5,95	0,63	2,53
Área foliar (cm²)	ŷ=79,442+0,553 E+0,023 E²+25,688 C-4,858 C²+0,569 EC	0,83	141,46	12,02	2,64
Área radicular (cm²)	ŷ=1,362+0,277*E+1,314 C-0,213 C²+0,057*EC	0,95	23,77	45,00	3,08
Relação altura/diâmetro	ŷ=3,538-0,020 E+0,0009 E ² +0,509*C- 0,054*C ² -0,002 EC	0,82	4,52	11,11	4,71
Relação parte aérea/raiz	ŷ=7,42-0,45*E+0,008*E ² -1,63*C+0,12 C ² +0,08*EC-0,001*E ² C	0,73	5,47	28,13	6,00

^{*} significativo pelo teste t, a 5% de probabilidade; # significativo pelo teste F, a 5% de probabilidade.

O uso de esterco de gado aumenta a capacidade de troca catiônica, a capacidade de retenção de água, a porosidade e agregação do solo (KIEHL, 2008). O calcário estimula o crescimento das raízes, e assim ocorre maior exploração da água e disponibilidade de nutrientes do solo (NATALE et al., 2012).

Foi obtido máxima produção de massa seca da parte aérea (3,75 g/planta) utilizando as doses de 45 t ha⁻¹ de esterco bovino e 4,8 t ha⁻¹ de calcário (Figura 1a) e máxima produção de massa seca de raiz (3,31 g/planta) utilizando as doses de 45 t ha⁻¹ de esterco bovino e 6 t ha⁻¹ de calcário (Figura 1b). As maiores produções observadas estão relacionadas pela alteração do pH do solo pela calagem e aumento do fornecimento de nutrientes pelo uso do esterco bovino, o que favorece um ambiente radicular mais propicio ao desenvolvimento das mudas.

Figura 1. Produção de biomassa seca e índice de qualidade de Dickson de mudas de andiroba cultivada com diferentes doses de esterco bovino e calcário, 2018.

O maior índice de qualidade de Dickson (1,41) foi obtido utilizando as maiores doses de 45 t ha⁻¹ de esterco bovino e 6 t ha⁻¹ de calcário (Figura 1c). O uso do esterco bovino e da calagem proporcionaram maior equilíbrio entre o crescimento da parte aérea e raiz e assim maior indicie de Dickson, isso está relacionado a diversos fatores como aumento da disponibilidade de Ca e Mg pela calagem e de N, P e K e das características físicas e biológicas do solo proporcionada pelo uso de esterco bovino.

Conclusões

O uso de esterco bovino e calagem aumenta a produção de biomassa e a qualidade das mudas de andiroba quando cultivada em Latossolo Vermelho eutrófico.

Referências bibliográficas

DICKSON, A.; LEAF, A. L.; HOSNER, J. F. Quality appraisal of white spruce and white pine seedling stock in nurseries. **The Forestry Chronicle**, Mattawa, v.36, n.1, p.10-13, 1960.

FERRAZ, I. D. K.; CAMARGO, J. L. C.; SAMPAIO, B. P. T. Sementes e plântulas de andiroba (*Carapa guianensis* Aubl. e *Carapa procera* DC): aspectos botânicos, ecológicos e tecnológicos. **Acta amazônica**, Manaus, v. 32, n. 4, p. 647-661, 2002.

FREITAS, M. F. et al. Caracterização da *Carapa guianensis* Aubl. (andiroba) em floresta de terra firme. In: SIMPÓSIO LATINO-AMERICANO SOBRE MANEJO FLORESTAL, 5., 2011, Santa Maria. **Anais**... Santa Maria: UFSM, 2011. p. 694-699.

KIEHL, E. J. **Adubação orgânica -** 500 perguntas e respostas. 2. ed. DEGASPARI. Piracicaba, SP, 2008. 227 p.

LEITE, S. H. et al. Uso de diferentes substratos e recipientes na produção de mudas de andiroba (*Carapa guianenes* Aubl.). In: SEMINÁRIO DE INICIAÇÃO CIENTÍFICA DA EMBRAPA ACRE, 1., 2013, Rio Branco. **Anais**... Rio Branco: Embrapa, 2013.

NASCIMENTO JÚNIOR, J. M.; TORRES, K. R.; ALVES, R. M. S. **Programa Nacional de Plantas Medicinais e Fitoterápicos**. *Brasil - Ministério da Saúde*. Brasília, DF, 2009.136 p.

NATALE, W. et al. Acidez do solo e calagem em pomares de frutas tropicais. **Revista Brasileira de Fruticultura**. Jaboticabal, v. 34, n. 4, p. 1294-1306, 2012.

RAIJ, B. V. Fertilidade do solo e manejo de nutrientes. IPNI. Piracicaba, SP, 2011. 420 p.

SILVA, F. C. Manual de análises químicas de solos, plantas e fertilizantes. Embrapa. Brasília, DF, 2009, 627 p.

SOUZA, C. R.; LIMA, R. M. B.; AZEVEDO, C. P.; ROSSI, L. M. B. **Andiroba** (*Carapa guianensis* Aubl.). 1 ed. EMBRAPA. Manaus, AM, 2006. 21 p.