

Levantamento florístico de um sistema agroflorestal localizado na Faculdade de Agronomia, da Universidade Federal do Rio Grande do Sul

Floristic survey of an Agroforestry System located within the Faculty of Agronomy at Federal University of Rio Grande do Sul

RIBEIRO, Guilherme.¹; RUVER, Bruna.²; TEIXEIRA, Aline. ³; OLIVEIRA, Ramiro. ⁴; GARCIA, Marinês. ⁵; COPINI, Gilnei.⁶

¹UFRGS, gui_ribeiro_11@hotmail.com; ²UFRGS, brunaruver@gmail.com; ^{.3}UFRGS, aline.kbteixeira@gmail.com; ⁴UFRGS, ramiropoliveira@hotmail.com; ⁵UFRGS, marines.garcia@ufrgs.br; ⁶UFRGS, copinigilnei@gmail.com

RESUMO EXPANDIDO

Eixo Temático: Manejo de Agroecossistemas

Resumo: A implementação de um Sistema Agroflorestal (SAF) visa a diversificação de espécies vegetais com suas multifuncionalidades. O SAF abordado foi implantado em 2006, na Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brasil. O resumo teve como objetivo o levantamento florístico das espécies arbustivas, arbóreas e palmeiras no SAF com Diâmetro Acima do Peito (DAP) de cinco centímetros e suas alturas. A identificação se deu através de suas exsicatas e posterior validação bibliográfica. A estimativa da altura dos indivíduos foi realizada com uma vara de bambu de cinco metros e o DAP com uma fita métrica. Dentre as espécies identificadas, destacam-se, *Ocotea puberula* (Rich.) Nees, *Euterpe edulis* Mart. e *Inga* sp.. As informações permitiram maior compreensão do processo de sucessão natural e embasamento para manejos no agroecossistema/SAF, que serve enquanto laboratório vivo para o ensino, extensão e pesquisa da universidade.

Palavras-chaves: Agrofloresta; UVAIA; recuperação de área degradada; laboratório vivo; identificação botânica.

Introdução

Na perspectiva histórica, a expansão urbana de Porto Alegre ocorreu em desacordo aos parâmetros ambientais de conservação e adequação quanto à avaliação da aptidão do uso do solo. As novas ordens agroalimentares acarretaram a demanda de produtos que estejam em consonância com as normas ambientais, surgindo a necessidade de implantação e construção de novos sistemas de produção agropecuários. Os sistemas agroflorestais (SAFs) se colocam enquanto alternativas, especialmente aqueles que são conduzidos sob a ótica da pluriatividade. Nesse sentido, a escolha das espécies que serão utilizadas na impantação dos SAFs e/ou conduzidos é essencial para a compreensão dos produtos a serem retirados do sistema, bem como o estabelecimento das condutas e práticas agroambientais a serem tomadas face à adequação ambiental e social para o manejo dos agroecossistemas.

Os SAFs podem apresentar riqueza florística, fitossociológica e otimização da fitofisionomia dos agroecossistemas em que são implantados. Em regra, são implantados e conduzidos sob os pressupostos da agroecologia, caracterizando-se como sistemas produtivos em relação à produção de alimentos e recursos naturais. Induzem a melhoria de indicadores edáficos, ecológicos, hídricos e agronômicos das áreas em que são implantados e desenvolvidos, em decorrência, essencialmente, das sinergias que são produzidas entre os diferentes componentes vivos e estratos da composição do agroecossistema (ALTIERI, 2002; FÁVERO et al., 2008; SEOANE et al., 2012).

Em relação à recuperação de áreas degradadas, os SAFs potencializam a regeneração natural, mesmo que induzidos pelo enriquecimento vegetal e sucessão ecológica de espécies. Nesse sentido, a sucessão ecológica funciona de forma similar e replicam os processos de sucessão natural. A inserção de espécies, através da ação antrópica, dar-se-ão a partir de escolhas de critérios, como ecológicos, funcionais, sucessionais e produtivos, perfazendo, ao fim, a composição florística consolidada de um SAF (PENEIREIRO,1999; FÁVERO et al., 2008).

Com o processo dinâmico de sucessão ecológica ao longo dos anos, a tendência dos SAFs é perfazerem ambientes com maior biodiversidade, aumento do número de estratos vegetativos, recuperação e promoção da qualidade físico-química e biológica do solo, recuperação das áreas degradadas. Através de levantamento florístico e fitossociológico será possível quantificar alguns desses indicadores, especialmente aqueles atinentes à composição vegetal (CHAVES et al., 2013).

O presente trabalho possui o objetivo de identificar e compreender a diversidade e riqueza de espécies vegetais nos estratos arbustivo-arbóreo de um SAF.

Metodologia

O levantamento florístico foi conduzido em SAF implementado há 15 anos localizado no interior da Faculdade de Agronomia, na UFRGS, no município de Porto Alegre, RS, que apresenta as coordenadas geográficas 30° 04 '17"S 51° 08' 16"W. O SAF possui dimensão de 4.325m² e aproximadamente 15 anos de implementação. A área está localizada ao lado do Arroio Dilúvio e possui histórico de períodos de alagamento no inverno.

A região está inserida segundo a classificação de Köppen (1931) na tipologia climática Cfa (subtropical chuvosa), enquadrando-se no clima regional quente e temperado com a existência de pluviosidade média de 1.580 mm ao longo do ano e temperatura média no município de 19,7 °C (CLIMATE-DATA, 2023).

O solo, segundo Ribeiro (2017), apresenta cores vermelho-amareladas, variando de 2,5 YR à 10 YR, sendo que o horizonte B1g apresenta croma baixo (2,5 YR 5/2) e mosqueados. Estas características estão associadas a períodos de saturação por água nesta posição do perfil, que promove a gleização e resulta nas cores

acinzentadas visíveis. Ainda conforme Ribeiro (2017), o solo possui textura franco-argilo-arenosa nas camadas superficiais (até 35 cm) e franco-argilosa a argilosa nas camadas subsuperficiais (até 85 cm de profundidade).

O SAF, conduzido pelo grupo Uma Visão Agronômica com Ideal Agroecológico (UVAIA), foi implementado visando ser um local de estudos e experimentações, sendo um "laboratório vivo" dentro da Faculdade de Agronomia e, também, como um sistema recuperador de uma área degradada.

O levantamento florístico da área se deu inicialmente pela coleta dos materiais vegetais (folhas, flores e frutos) das espécies com o DAP acima de 5 cm para a realização das exsicatas e identificação das espécies de acordo com Lorenzi (2016), Herbário do Departamento de Botânica da Universidade Federal do Rio Grande do Sul (ICN - UFRGS) e no Repositório Flora e Funga do Brasil (JBRJ,2023). Para cada indivíduo pertencente ao componente arbóreo, foram coletadas medidas dendrométricas utilizando fichas de campo. As medidas incluíram o diâmetro à altura do peito (DAP) e a altura total, que foi estimada visualmente. A medição da Circunferência à Altura do Peito (CAP) foi realizada utilizando fita métrica, com a altura de 1,3 metros e posteriormente, através da equação DAP=CAP/π. As alturas foram estimadas de forma visual, comparando-as com as alturas dos demais indivíduos presentes na área de estudo. Para a estimativa de altura, foi utilizado um colmo cilíndrico de bambu com marcações em intervalos de dois metros, três metros, quatro metros e cinco metros.

A estrutura vertical das espécies medidas foi classificada em três estratos: estrato inferior (EI) – árvores com altura total HT < 7,0 m; estrato médio (EM) – 7 < HT < 14,0 m e estrato superior (ES) – HT > 14,1 m (DIONÍSIO et al., 2017).

Resultados e Discussão

No SAF manejado pelo grupo UVAIA, foram identificados 319 indivíduos com o DAP acima de 5 cm, pertencentes a 52 espécies diferentes, sendo 8 destas identificadas somente a nível de gênero. Do total de espécies, 42 são nativas do Rio Grande do Sul e 10 exóticas. Das espécies identificadas, podemos destacar, pelo maior número de ocorrência, as seguintes espécies: *Ocotea puberula* (29 indivíduos), *Euterpe edulis* (24), *Inga* spp. (23 indivíduos), *Enterolobium contortisiliquum* (18 indivíduos), *Eugenia uniflora* (16 indivíduos), *Allophylus edulis* (15 indivíduos). A lista completa é apresentada na Tabela 1.

Tabela 1: Lista de espécies catalogadas e respectivos números de indivíduos

Espécie	Número de indivíduos
Ocotea puberula (Rich.) Nees	29
Euterpe edulis Mart.	24
Inga spp.	23
Enterolobium contortisiliquum (Vell.) Morong	18
Eugenia uniflora L.	16
Allophylus edulis (A. StHil., Cambess. & A. Juss.) Hieron. ex Niederl.	15
Ateleia glazioveana Baill.	15

Eugania invaluarata DC	11
Eugenia involucrata DC.	44
Schinus terebinthifolia Raddi	11
Cabralea canjerana (Vell.) Mart.	10
Citrus spp.	10
Bauhinia forficata Link	9
Cupania vernalis Cambess.	9
Psidium cattleianum Sabine	9
Trema micrantha (L.) Blume	9
Cordia americana (L.) Gottsb. & J.S. Mill.	8
Anadenanthera colubrina (Vell)	7
Erythroxylum argentinum O.E.Schulz	6
Monteverdia ilicifolia (Mart. ex Reissek)	6
Feijoa sellowiana (O. Berg) O.Berg	5
Campomanesia xanthocarpa (Mart.) O.Berg	5
Eugenia pyriformis Cambess.	5
Myrcianthes pungens (O. Berg) D. Legrand	5
Syagrus romanzoffiana (Cham) Glassman	5
Handroanthus sp.	4
Luehea divaricata Mart. & Zucc.	4
Matayba elaeagnoides Radlk.	4
Annona sylvatica A. StHil.	3
Annona sp.	2
Araucaria angustifolia (Bertol.) Kuntze	2
Campomanesia guazumifolia (Cambess.) O. Berg	2
Casearia sylvestris Sw.	2
Cedrela fissili Vell.	2
Ficus sp.	2
Mimosa bimucronata (DC.) Kuntze	2
Morus sp.	2
·	2
Pachira glabra Pasq.	
Bambusa spp.	2
Acacia sp.	1
Alchornea triplinervia (Spreng.) Müll. Arg.	1
Bixa orellana L.	1
Cecropia pachystachya Trécul	1
Cydonia oblonga Mill.	1
Myrsine coriacea (Sw.) R.Br. ex Roem. & Schult.	1
Persea americana Mill.	1
Syzygium cumini (L.) Skeels	1
Zanthoxylum rhoifolium Lam.	1
Nectandra oppositifolia Ness	1
Sapium glandulosum (L.) Morong	1
Solanum pseudoquina A.StHil.	1
Cinnamomum camphora (L.) J. Presl	1
Colubrina glandulosa Perkins	1
Total	319

Fonte: Os autores (2023).

Em relação às famílias botânicas das espécies identificadas, foram identificadas 26 famílias diferentes, com maior frequência de espécies para as Myrtaceae (9 espécies), Fabaceae (7 espécies), Lauraceae (4 espécies) e Sapindaceae (3 espécies). O resumo relativo às informações da quantidade de espécies por família é apresentado na Tabela 2.

Tabela 2: Lista das famílias botânicas e seus respectivos números de espécies catalogados.

Família botânica	Número de espécies
Myrtaceae	9
Fabaceae	7
Lauraceae	4
Sapindaceae	3
Annonaceae	2
Arecaceae	2
Euphorbiaceae	2
Malvaceae	2
Meliaceae	2
Moraceae	2
Rutaceae	2
Anacardiaceae	1
Araucariaceae	1
Bignoniaceae	1
Bixaceae	1
Boraginaceae	1
Cannabaceae	1
Cecropiaceae	1
Celasteraceae	1
Erythroxylaceae	1
Poaceae	1
Primulacaceae	1
Rhamnaceae	1
Rosaceae	1
Salicaceae	1
Solanaceae	1

Fonte: Os autores (2023).

Das espécies identificadas, os gêneros mais frequentes foram *Eugenia* (3), *Annona* (2) e *Campomanesia* (2), sendo o restante dos gêneros encontrados com somente uma espécie.

Em relação à altura das espécies, variou entre 2,2 a 22,5 metros, tendo como média 8,81 metros. A estrutura da estratificação se deu com 36,33% no estrato inferior (EI), 52,67% das espécies no estrato médio (EM) e 11% no estrato superior (ES). A espécie que atingiu a maior altura foi a *Ateleia glazioveana* com 22,5 metros.

Desse modo, sugere-se que o SAF sucessional em questão se caracteriza por ser um sistema multiestratificado, que se aproxima da dinâmica de sucessão ecológica de restauração de uma área anteriormente degradada para um sistema agroflorestal multifuncional, que conjuga espécies exóticas e nativas.

Conclusões

Diante dos resultados anteriormente citados, podemos concluir que o SAF pertencente ao grupo UVAIA possui uma diversidade de espécies, sendo, na grande maioria,nativas do Brasil e do Rio Grande do Sul, destacando-se as famílias Myrtaceae, Fabaceae e Lauraceae. Sendo assim, o presente trabalho possibilita um maior número de informações a respeito do agroecossistema, permitindo realizar

um planejamento mais confiável de futuros manejos na área e servir como laboratório vivo para a promoção da agroecologia na UFRGS.

Referências bibliográficas

ALTIERI, Miguel. Agroecologia: bases científicas para uma agricultura sustentável. Guaíba: **Agropecuária**, 2002. 592p.

CLIMATE-DATA. CLIMA: Passo de Torres, 2016. Disponível em: 2023.

DIONÍSIO, Luis F.S.; DA SILVA, Nágilla G.E.; DE OLIVEIRA, Marcelo H.S.; D'ARACE, Larissa M.B.; NEVES, Raphael L.P.. Fitossociologia em sistemas agroflorestais com diferentes idades de implantação no município de Medicilândia, PA. **Revista Agro@Mbiente** On-Line, v.11, n.1, p. 71-81, 2017.

FÁVERO, Claudenir; LOVO, Ivana. C.; MENDONÇA Eduardo D. S. Recuperação de área degradada com sistema agroflorestal no Vale do Rio Doce, Minas Gerais. **Revista Árvore**, v. 32 (5), Out, 2008.

Flora e Funga do Brasil. Jardim Botânico do Rio de Janeiro. Disponível em: < http://floradobrasil.jbrj.gov.br/ >. Acesso em: 04 jul. 2023.

LORENZI, Harri. Árvores brasileiras: Manual de identificação e cultivo de plantas arbóreas nativas do Brasil. 5. ed. São Paulo: **Instituto Plantarum de Estudos da Flora**, vol. 2, 2016.

KÖPPEN, Wilhelm. Climatologia. México, Fundo de Cultura Econômica, 1931.

PENEIREIRO, Fabiana M. **Sistemas agroflorestais dirigidos pela sucessão natural: um estudo de caso**. 1999. 138f. Dissertação (Mestrado em Ciência Florestal) - Escola Superior de Agricultura Luis de Queiróz, Piracicaba, 1999.

SEOANE, Carlos E. S.; SILVA, Rodrigo O.; STEENBOCK, Walter; MASCHIO, Wilnatã; PINKUSS, Isaque L.; SALMON, Luiz P.G.; DA LUZ, Raphael S. S.; FROUFE, luís C.M. Agroflorestas e serviços ambientais: espécies para aumento do ciclo sucessional e para facilitação de fluxo gênico. **Revista Brasileira de Agropecuária Sustentável**, v.2, n.2, p.183-188, 2012.

SILVA, Edsleine. R.. Caracterização e classificação de solos e alterações por uso e manejo em uma planície aluvial do município de Porto Alegre - RS. 2017.111 f. Dissertação (Mestrado em Ciência do Solo) – Universidade Federal do Rio Grande do Sul, Porto Alegre, 2017.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL. Herbário ICN-UFRGS. **Instituto de Biociências**. Disponível em: https://www.ufrgs.br/herbarioicn/>. Acesso em: 10 mai. 2023.