

Levantamento fitossociológico de plantas espontâneas em cultivo consorciado de hortaliças.

Phytosociological survey of spontaneous plants in intercropped vegetable cultivation.

SANTOS, Valquíria Barros dos¹; BORRALHO, Jefferson Fontinele²; PEIXOTO, Marianne Camile Rodrigues³; NUNES, Robert Filipe Costa⁴; RODRIGUES, Daniel dos Santos⁵; SILVA, Maria Rosangela Malheiros⁶

^{1, 2, 3, 4, 5, 6} Universidade Estadual do Maranhão, ¹barrosvalquiria0206@gmail.com; ²jeffersonfontineleborralho@gmail.com; ³marpeixoto1@outlook.com; ⁴robertfilipecostanunes@gmail.com; ⁵daniel88251845@gmail.com; ⁵romalheir@gmail.com.

RESUMO EXPANDIDO

Eixo Temático: Manejo de Agroecossistemas

Resumo: O consórcio de hortaliças pode ser uma estratégia no manejo das plantas espontâneas. O quiabo (*Abelmoschus esculentus*), maxixe (*Cucumis anguria*) e inhame (*Colocasia esculenta*), são potenciais para consórcio, mas com arranjos pouco estudados. A pesquisa objetivou realizar o levantamento fitossociológico das plantas espontâneas em cultivo consorciado de hortaliças. O delineamento foi em blocos casualizados, com quatro repetições, e os tratamentos: T1-Monocultivo do Maxixe; T2-Maxixe e Quiabo; T3-Maxixe e Inhame; e T4-Maxixe, Quiabo e Inhame. As plantas espontâneas foram coletadas para determinação da composição florística e parâmetros fitossociológicos. Foram encontrados 2.313 indivíduos, 14 famílias botânicas e 22 espécies. As famílias Poaceae e Asteraceae foram as mais expressivas e as espécies de maior Índice de Valor de Importância (IVI) foram *Phyllanthus niruri* e *Alternanthera tenella* em todos os tratamentos. Os consórcios em T3 e T4 suprimem plantas espontâneas.

Palavras-chave: Consórcio; Vegetação espontânea; Fitossociologia.

Introdução

O consórcio de culturas trata-se de uma técnica agrícola utilizada comumente por pequenos agricultores e que se baseia em combinações espaciais e temporais de culturas na mesma área (CAERDES, 2014; SEDYAMA *et al.*, 2014), possibilitando uma melhoria da eficiência do uso da terra e maximização do uso de recursos ambientais (KOEFENDER *et al.*, 2016). Além desses benefícios, Altiere (2002) relatou que o consórcio de culturas pode ser uma estratégia para o manejo das plantas espontâneas devido à exploração mais eficiente dos recursos naturais, luz, nutrientes e água que os monocultivos.

Existem várias hortaliças com potencial para consórcio e que são cultivadas por agricultores familiares, entre elas destacam-se o quiabeiro, *Abelmoschus esculentus* (L.) Moench. e o maxixe *Cucumis anguria* L., que devido os diferentes portes, arquitetura e crescimento podem explorar melhor os recursos do ambiente. Além dessas hortaliças, o inhame *Colocasia esculenta* (L.) Schott., também é uma opção

para consórcio pela tolerância ao sombreamento e excelentes características nutricionais.

A fitossociologia é uma área de estudo voltada ao conhecimento das comunidades vegetais analisando aspectos como composição, classificação, diversidade e relações edafoclimáticas das espécies vegetais na região onde estão inseridas, a fim de obter a caracterização do ecossistema, fornecendo informações sobre os arranjos, possibilitando identificação dos manejos adequados (KUVA, SALGADO, ALVES, 2021).

Destaca-se que são escassos os estudos dos consórcios dessas hortaliças sobre a supressão de plantas espontâneas. Dessa forma, a pesquisa objetivou realizar o levantamento fitossociológico das plantas espontâneas em cultivo consorciado de maxixe, quiabo e inhame como alternativa de manejo dessas espécies em sistema agroecológico para os agricultores familiares.

Metodologia

O experimento foi conduzido em área experimental do Núcleo de Estudos em Agroecologia e Produção Orgânica (NEAPO) situado na Fazenda Escola São Luís da Universidade Estadual do Maranhão em São Luís – MA. O clima local é do tipo Aw quente e úmido segundo a classificação de Koppen (ALVARES *et al.*, 2013).

O delineamento foi em blocos casualizados, com quatro repetições, e os tratamentos foram: T1 - Monocultivo do Maxixe; T2 - Maxixe e Quiabo; T3 - Maxixe e Inhame; T4 - Maxixe Quiabo e Inhame. O monocultivo do maxixe correspondeu à testemunha que após estabelecida, não foi capinada, assim como os consórcios.

As parcelas experimentais foram constituídas por 12 m² sendo que o monocultivo de maxixe (T2), consistiu de quatro linhas de 3,0 m de comprimento espaçadas 1,0 m entre linhas e 0,50 m entre plantas. As parcelas do consórcio do maxixe com inhame e/ou quiabo constaram de sete linhas, quatro linhas do inhame e/ou quiabo e três linhas de maxixe, sendo que no consórcio das três hortaliças o inhame e o quiabo foram plantados na mesma linha e espaçados 0,25 m.

As hortaliças foram plantadas em covas após uma adubação de fundação com 0,5 L de cama de aviário e para o quiabeiro acrescentou-se 25 g/cova de farinha de osso. As mudas de maxixe foram transplantadas 19 dias após o plantio (DAP) do inhame com duas sementes/muda e as mudas de quiabeiro foram transplantadas 35 DAP do inhame. Foram realizadas adubações de cobertura com 0,5 L de cama de aviário para o inhame aos 15 DAP; para o maxixe aos 28 dias após o transplantio (DAT); e para o quiabeiro aos 48 DAT.

Aos 37 DAT do maxixe foi realizada a coleta das plantas espontâneas pelo método do quadrado inventário (0,50 m x 0,50 m) o qual foi lançado ao acaso por três vezes dentro das parcelas. Em cada amostragem, as partes aéreas das plantas foram cortadas rente ao solo, contadas, identificadas e postas para secagem em estufa com ventilação forçada de ar a 65-70 °C até atingirem massa constante.

Os dados de densidade e matéria seca das plantas foram usados para determinação dos índices fitossociológicos: Densidade Relativa, Frequência Relativa, Dominância Relativa e Índice de Valor de Importância (IVI), de acordo com Pitelli, 2000 e Corrêa *et al.*, 2011.

Resultados e Discussão

Foi identificado um total de 2.313 indivíduos distribuídos em 14 famílias botânicas e 22 espécies. Desse total, o monocultivo de maxixe (T1) apresentou 13 espécies e 799 indivíduos; o consórcio de maxixe e quiabo (T2) obteve 17 espécies e 783 indivíduos; o consórcio maxixe e inhame (T3) 10 espécies e 298 indivíduos e o consórcio maxixe, quiabo e inhame (T4) 11 espécies e 433 indivíduos (Tabela 1).

O levantamento realizado por Sackser *et al.* (2021), no consórcio de couve-folha com quiabeiro mostrou 23 espécies de plantas espontâneas em 14 famílias, corroborando com os resultados obtidos nesta pesquisa.

As principais famílias foram a Poaceae, com quatro espécies, e a Asteraceae três espécies. As espécies *C. benghalensis, C. diffusus, A. tenella, E. coccinea, M. verticillata* e *P. niruri* foram comuns a todos os tratamentos. Enquanto as espécies da família Poaceae, Asteraceae (*C. punctatum* e *T. procumbens*), Cleomaceae e Convolvulaceae foram suprimidas pelo consórcio do maxixe com inhame (T3) e maxixe, quiabo e inhame (T4) (Tabela 1).

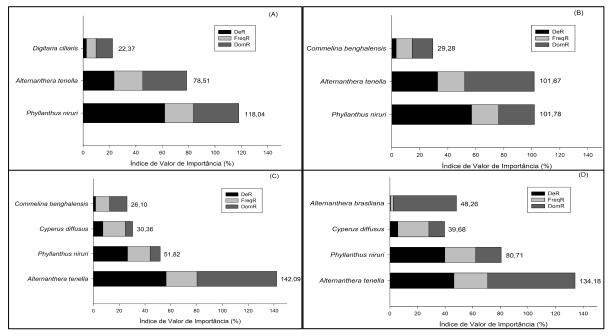
As famílias Poaceae e Asteraceae comumente apresentam alta incidência em levantamentos fitossociológicos em virtude da sua disseminação facilitada pela presença de diásporos e grande quantidade de sementes produzidas (SANTOS et al., 2020; SACKSER et al., 2021).

Santos et al. (2020), também verificaram as espécies *C. benghalensis*, *C. diffusus*, *A. tenella*, *E. coccinea*, *M. verticillata* e *P. niruri* no consórcio do quiabeiro com adubos verdes em São Luís, o que significa que essas espécies estão bem adaptadas às condições edafoclimáticas da região.

Tabela 1. Grupo botânico, famílias e espécies de plantas espontâneas identificadas na cultura do maxixe em monocultivo (T1), e consórcio com quiabo (T2), inhame (T3) e quiabo e inhame (T4) aos 55 DAP do inhame. NEAPO/UEMA/São Luís – MA, 2022.

Família	Espécie	T1	T2	T3	T4
	MONOCOTILEDÔNEA				
Commelinaceae	Commelina benghalensis L.	Χ	Χ	Χ	Χ
Cyperaceae	Cyperus diffusus Vahl.	Χ	Χ	Χ	Χ
	Kyllinga odorata Vahl.	-	-	Χ	Χ
Poaceae	Digitaria ciliaris (Retz.) Koeler.	Χ	Χ	-	-
	Eleusine indica (L.) Gaertn	Χ	Χ	-	-
	Panicum trichoides Sw.	Χ	-	-	-
	Paspalum maritimum Trin.	-	Χ	-	-
	EUDICOTILEDÔNEA				

Amaranthaceae	Alternanthera brasiliana (L.) Kuntze	-	-	-	Χ
	Alternanthera tenella Colla.	Χ	Χ	Χ	X
Asteraceae	Emilia coccinea (Sims) G. Don.	Χ	Χ	Χ	Χ
	Centratherum punctatum Cass.	Χ	-	-	-
	Tridax procumbens L.	-	Χ	-	-
Cleomaceae	Hemiscola aculeata (L.) Raf.	Χ	Χ	-	-
Convolvulaceae	Ipomea racemosa Poir.	-	Χ	-	-
Euphorbiaceae	Chamaesyce hirta (L.) Millsp.	Χ	Χ	Χ	-
	Microstachys corniculata (Vahl.) Griseb	Χ	Χ	-	X
Molluginaceae	Mollugo verticillata L.	Χ	Χ	Χ	Χ
Onagraceae	Ludwigia leptocarpa (Nutt.) H. Hara.	-	-	Χ	-
Phyllanthaceae	Phyllanthus niruri L.	Χ	Χ	Χ	Χ
Rubiaceae	Spermacoce latifolia Aubl.	-	Χ	-	Χ
Talinaceae	Talinum triangulare (Jacq.) Willd.	-	Χ	-	Χ
Turneraceae	Turnera subulata Sm.	-	Χ	Χ	-
TOTAL	22 sp.	13	17	10	11


As plantas espontâneas de maiores Índices de Valor de Importância (IVI) em todos os tratamentos foram *P. niruri* e *A. tenella*. Os maiores IVI para *P. niruri* foi em monocultivo do maxixe (118,04%) e consórcio de maxixe e quiabo (101,78%). Para *A. tenella* foram os consórcios de maxixe e inhame (142,09%) e do maxixe, quiabo e inhame (134,18%) (Figura 1).

Os resultados obtidos foram superiores aos encontrados por Barros, Nina e Oliveira (2021), em levantamento em área de produção orgânica de hortaliças onde obtiveram para *P. niruri* IVI de 6,1% e para *A. tenella*, 19%.

A densidade relativa foi o principal parâmetro fitossociológico que elevou a importância de *P. niruri*, enquanto a dominância relativa foi para *A. tenella*. A maior densidade relativa de *P. niruri*, provavelmente resultou de suas características morfológicas de planta herbácea com folhas pequenas que se desenvolve tanto em ambiente de plena iluminação como sob luz difusa (KISSMANN; GROTH, 1999). Assim, o monocultivo de maxixe e o consórcio de maxixe e quiabo proporcionaram maior sombreamento que favoreceu essa espécie.

Em contrapartida, para *A. tenella*, esse resultado está relacionado ao fato dessa espécie conseguir produzir grande biomassa ocupando áreas de maneira mais eficiente em função do hábito prostrado e ramificado (LORENZI, 2008; LORENZI, 2014). Portanto, os consórcios de maxixe e inhame e do maxixe, quiabo e inhame, não reduziram o acúmulo de massa seca de *A. tenella* que apresenta significativo potencial de absorção e acúmulo de nutrientes como K e Mg⁺², presentes em consideráveis concentrações nos caules e folhas dessa espécie (VIVIAN *et al.*, 2008), o que implica na necessidade de um manejo em virtude da competição por nutrientes com as hortaliças.

Figura 1. Índice de Valor de Importância das principais espécies de espontâneas na cultura do maxixe em monocultivo (A) e consorciado com quiabo (B), inhame (C) e quiabo e inhame (D) aos 56 DAP do inhame. NEAPO/UEMA/São Luís – MA, 2022. Fonte: Arquivo Pessoal.

Conclusões

As famílias botânicas Poaceae e Asteraceae são as mais expressivas no maxixe em monocultivo e em consórcio com quiabo e inhame, e as espécies de maior Índice de Valor de Importância (IVI), são *Alternanthera tenella* Colla. e *Phyllanthus niruri* L.

Os consórcios de maxixe e inhame (T3) e maxixe, quiabo e inhame (T4) suprimem plantas espontâneas.

Agradecimentos

Ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) pelo apoio financeiro ao NEAPO, à Fundação de Amparo à Pesquisa e Desenvolvimento Científico do Maranhão (FAPEMA), e à Universidade Estadual do Maranhão – UEMA.

Referências bibliográficas

ALTIERE, M. **Agroecologia: bases científicas para uma agricultura sustentável**. Guaíba: Editora Agropecuária, 2002.

ALVARES, C. A. et al. Koppen's climate classification map of Brasil. **Meteorologische Zeitschrift**. v. 22, n. 6, p. 711-728, 2013.

BARROS, E. R; NINA, N. C. S, OLIVEIRA, O. M. S. Fitossociologia de plantas espontâneas em agroecossistemas familiares de base ecológica Manaus — AM. **Brazilian Journal of Development**. Curitiba. v.7, n.11, p. 105176-105185, 2021.

Centro de Agroecologia, Energias Renováveis e Desenvolvimento Sustentável (CAERDES). **Agroecologia: fundamentos e aplicação prática**/ Organizado por Jairton Fraga Araújo, elaborado por Adrielle Cristina de Sousa Costa, Victor Hugo Freitas Gomes, Waldyr Ítalo Serafim Araújo, ilustrado por Gilmário N. de S. *et al.* - Salvador: EDUNEB, 2014 - Cartilha Agroecologia, v. 1. 60 p.

CORRÊA, M. L. P. et al. Dinâmica populacional de plantas daninhas na cultura do milho em função de adubação e manejo. **Revista Ciência Agronômica**. v. 42, n. 2, p. 354-363, 2011.

KISSMANN, K. G.; GROTH, D. **Plantas Infestantes e Nocivas**. São Paulo: BASF. 2ª ed. 978 p. 1999.

KOEFENDER, J. et al. Consorciação entre alface e cebola em diferentes espaçamentos. **Horticultura Brasileira**. v. 34, n. 4, p. 580-583, 2016.

KUVA, M. A.; SALGADO, T. P.; ALVES, P. L. C. A. Índices Fitossociológicos Aplicados na Ciência e na Gestão das Estratégias de Controle de Plantas Daninhas. *In*: BARROSO, A. A. M.; MURATA, A. T. T. **Matologia**: estudos sobre plantas daninhas. Jaboticabal: Fábrica da Palavra, 2021. p. 60-105.

LORENZI, H. **Plantas Daninhas Do Brasil**: terrestres, aquáticas, parasitas e tóxicas. São Paulo: Nova Odessa, 4ª ed. 672 p. 2008;

LORENZI, H. **Manual de Identificação e Controle de Plantas Daninhas**: plantio direto e convencional. São Paulo: Nova Odessa, 7ª ed. 384 p. 2014.

PITELLI, R. A. Estudos fitossociológicos em comunidades infestantes de agroecossistemas. **Jornal Consherb**. v.1, n.2, p.1-7, 2000.

SACKSER, G. A. B. et al. Levantamento fitossociológico de plantas daninhas em cultivo de couve-folha em consorciação com quiabeiro em sistema de produção orgânico. **Research, Society and Development**. v. 10, n. 2. 2021.

SANTOS, R. N. V.; SANTOS, L. L. O.; DA MACENA, C. V. S. P. Green Manure Intercropped with Okra for Spontaneous Plant Suppression. **Journal of Agricultural Studies**. v. 8, n. 4, p. 507 – 522, 2020.

SEDIYAMA, M. A.N.; SANTOS, I.C.; LIMA, P.C. Cultivo de hortaliças no sistema orgânico. **Revista Ceres**, Viçosa, v.61, p.829-837, 2014.

VIVIAN, R. et al. Partição de Fotoassimilados e Acúmulo de Macronutrientes Alternathera tenella em Competição com Soja. In: XXVI CBCPD E XVIII CALAM, Ouro Preto, 2008.