

Fitossociologia de plantas espontâneas em área de fruticultura, cultivo do mamão no Cerrado maranhense

Phytosociology of spontaneous plants in a fruticulture area, papaya cultivation in the cerrado of Maranhão

CARVALHO, Maysa da Silva¹; MARINHO, Denise Lima Cavalcante²; NASCIMENTO, Ivaneide de Oliveira³; PORTO, Niara Moura⁴; CARVALHO, Antônio Expedito Ferreira Barroso de⁵.

¹ Universidade Estadual da Região Tocantina do Maranhão (UEMASUL), maysa.carvalho@uemasul.edu.br; ²Universidade Estadual da Região Tocantina do Maranhão -UEMASUL, denisecavalcante@uemasul.edu.br; ³Universidade Estadual da Região Tocantina do Maranhão - UEMASUL, ivaneide@uemasul.edu.br; ⁴Universidade Estadual da Região Tocantina do Maranhão - UEMASUL, expebarroso@uemasul.edu.br;

RESUMO EXPANDIDO

Eixo Temático: Manejo de Agroecossistemas

Resumo: A interferência das plantas espontâneas é de fato um dos principais problemas enfrentados pelos fruticultores brasileiros. As plantas espontâneas competem com as culturas por recursos essenciais como água, nutrientes, luz e espaço. O objetivo da pesquisa foi avaliar a dinâmica da comunidade de plantas espontâneas na área de fruticultura. O levantamento foi realizado em área de cultivo de mamão com idade de um ano, situada no município de Governador Edson Lobão, no Cerrado maranhense, utilizando-se o método do quadrado inventário, lançado nove vezes aleatoriamente em uma área de 50x100 m. A amostragem foi realizada durante a estação chuvosa. O material vegetal contido no quadrado foi coletado, identificado, quantificado e após secagem foi determinada sua matéria seca. As variáveis fitossociológicas analisadas foram: frequência, densidade, dominância relativa e absoluta e índice de valor de importância (IVI). As famílias predominantes na área foram Cyperaceae, Poaceae e Malvaceae. A espécie com maior IVI foram *Corchorus aestuans*, *Eleusine indica e Echinochloa crus-pavonis*.

Palavras-chave: Comunidades infestantes; Plantas daninhas; Mamão.

Introdução

Em 2020 a produção mundial de frutas foi de 887.027 toneladas, sendo 27,4% produzida pela China e 11,9% pela Índia. O Brasil, apesar de ocupar a terceira posição, detém um percentual de apenas 4,5% da produção mundial, do qual 97% são consumidos no mercado interno. (CARVALHO, 2017; VIDAL, 2022). O cultivo de frutas ocorre em todos os estados brasileiros, com destaque para São Paulo como o maior produtor, seguido pela Bahia, Minha Gerais e Rio Grande do Sul (CARVALHO, 2017).

O mamão é uma das frutas tropicais mais consumidas e economicamente importantes em todo o mundo. Originário das regiões tropicais das Américas Central e do Sul, é apreciado por seu sabor agradável, alto valor nutricional e benefícios à saúde. (CANUTO, 2011)

A economia agrícola do estado do Maranhão é significativamente beneficiada pela produção de mamão. A cultura do mamoeiro desempenha um papel socialmente significativo, uma vez que desencadeia oportunidades de emprego e fontes de renda, tanto de forma direta quanto indireta. É notável o fato de que essa atividade exige mão de obra ao longo de todo o ano, abrangendo cuidados culturais, a fase da colheita e posteriormente nas plantações (PINTO FILHO,2019).

No Maranhão, as frutas são procedentes de outros estados devido à sua baixa produção, o que pode comprometer a qualidade dos produtos, entretanto, esse estado reúne todas as condições adequadas para a produção de diversas frutíferas, além possuir uma localização geográfica estratégica para o escoamento da sua produção (ALMEIDA, 2020).

Vários fatores podem comprometer a baixa produção em um pomar, dentre eles, a interferência das plantas espontâneas. Segundo Pitelli (1987), essa interferência é influenciada por vários fatores ligado a comunidade infestante (densidade, distribuição e composição específica), à própria cultura (espaçamento, densidade de plantio e espécie) e à época e extensão do período de convivência. Essa convivência entre plantas cultivadas e as plantas espontâneas promovem uma disputa constante por recursos que poderá comprometer a produtividade da cultura.

Para determinação dos impactos provocados pela presença das plantas espontâneas em sistemas agrícolas é de fundamental importância identificar e avaliar as espécies que exercem maior influência na comunidade infestante. Desse modo, os estudos fitossociológicos tornam-se importantes ferramentas para entender a evolução de uma comunidade infestante ao longo do desenvolvimento de uma cultura, uma vez que as populações variam em função dos fatores ecológicos e manejo utilizado.

Assim, os conhecimentos desses índices permitem o entendimento da dinâmica das populações das plantas espontâneas durante o ciclo das culturas agrícolas, facilitando a decisão sobre o manejo. Nesse contexto, este trabalho tem por objetivo caracterizar a dinâmica da comunidade infestante de plantas espontâneas em área agrícola de fruticultura no município de Governador Edison Lobão.

Metodologia

A área de estudo selecionada para a realização do levantamento fitossociológico em foi área de fruticultura, plantio de mamão, situada no município de Governador Edson Lobão (5° 74' S e 47° 36' W), no Cerrado maranhense.

Para o levantamento da comunidade infestante foi utilizado o método do quadrado inventário, utilizando-se como amostra um quadro de 0,25 m² (0,5m x 0,5m), o qual foi lançado nove vezes por meio de caminhamento em ziguezague, aleatoriamente, o período de amostragem aconteceu durante a estação chuvosa. As amostras de cada quadrado foram cortadas rente ao solo, acondicionadas em sacos plásticos e levadas para o laboratório onde foram identificadas por meio de literatura especializada,

segundo a família, gênero e espécie. Após a identificação, as espécies foram quantificadas, acondicionadas em saco de papel e pesadas para obtenção do seu peso verde. Em seguida as espécies foram secas em estufa de ventilação forçada por cerca de 72 horas, regulada à temperatura de 65 a 70°, para obtenção de massa seca total e por espécie.

Os dados relativos a cada espécie da comunidade infestante foram utilizados para determinação dos seguintes parâmetros fitossociológicos: Densidade (De), que permite avaliar a distribuição de espécie na área de estudo; Frequência (Fe), que permite quantificar as plantas de cada espécie por unidade de área e Dominância (Do), que informa sobre a concentração de espécie na área. Para expressar numericamente a importância de uma determinada espécie em uma comunidade foi calculado o Índice de valor de Importância (IVI), que envolve a Densidade relativa (De.R), a Frequência Relativa (Fe.R) e dominância relativa (Do.R). Estes parâmetros foram obtidos com auxílio das fórmulas abaixo, conforme metodologia descrita por Pitelli (2000):

a) De.R= (Ne / Nt)x100(%)

onde:

Ne = número de indivíduos de uma espécie encontrada nas amostragens Nt = número total de indivíduos amostrados da comunidade

b) Fr.R = (FAe / FAt)x100(%)

onde:

FAe = frequência absoluta de uma determinada população

FAt = somatória das frequências de todas as populações da comunidade

c) Do.R = (MSe / MSt)x100(%)

onde:

MSe = peso da matéria seca acumulada por uma determinada população

MSt = peso da matéria seca acumulada por toda a comunidade infestante

d) IVI = De.R + Fr.R + Do.R

Resultados e Discussão

Foram identificadas 26 espécies de plantas espontâneas infestando a cultura do mamão, distribuídas em 21 gêneros e 13 famílias (Tabela 1). As famílias que apresentaram maiores representatividades foram Cyperaceae, Poaceae, Malvaceae e Amaranthaceae com 8,3,2 e 2 espécies cada respectivamente, representando um total de 57.69%.

A abundância de espécies da Família Cyperaceae reflete a vantagem competitiva, portanto, abrange a sua capacidade de propagação vegetativa, já que grande parte de suas espécies formam um sistema subterrâneo compostos por rizomas e tubérculos. (SANTOS, 2018).

Tabela 1 - Relação de plantas espontâneas, identificadas por família, espécie e nome comum.

Familia	Nome Científico	Nome comum		
A + l	Amarathus viridis	Caruru		
Amaranthaceae	Amaranthus blitum L.	bredo		
Phyllanthaceae	Phyllanthus niruri	Quebra-Pedra		
Turneraceae	Turnera melochioides Cambess.	Chanana		
Euphorbiaceae	Euphorbia hirta	Erva-de-santa-luzia		
Rubiaceae	Richardia brasilensis	Poaia-do-Campo		
	Borreria palustris (Cham. & Schltdl.)	Erva-de-lagarto		
	Bacigalupo & E. L. Cabral	Erva-de-lagarto		
Gramineae	Eleusine indica	Pé-de-galinha		
Cyperaceae	Scleria mitis P.J. Bergiua	Navalha-de-macaco		
	Cyperus virens Michx	Tiririca-do-brejo		
	Cyperus aggregatus (Willd.) Endl.	tiririca-de-três-quinas		
	Kyllinga brevifolia Rottb.	capim-de-uma-só-cabeça		
	Cyperus esculentusL.	batatinha-de-junça		
	Cyperus iriaL.	Junça		
	Cyperus rotundusL.	tiririca-vermelha		
	Pycreus polystachyos (Rottb.) P. Beauv	Tiririca- comum		
Commelinaceae	Commelina benghalensis	Trapoeraba		
	Tradescantia fluminensis Vell.	trapoeraba-branca		
Poaceae	Echinochloa crus-pavonis (Kunth) Schult	Capim-arroz		
	Megathyrsus maximus (Jacq.) B. K. Simon			
	& S. W. L. Jacobs	capim-coloninho		
	Cyrtococcum patens (L.) A.Camus	Capim-de-cavalo		
Asteraceae	Bidens pilosa L.	carrapicho-picão		
Fabaceae	Senna obtusifolia (L.) H. S. Irwin & Barneby	mata-pasto		
hydrocharitaceae	vallisneria americana	Tiririca-brava		
Malvaceae	Triumfetta rhomboidea	o burbark de diamante		
	Corchorus aestuans L.	Caruru-da-Bahia		

Na região de Cerrado maranhense, as principais espécies observadas no levantamento fitossociológico realizado na cultura do mamão (Tabela 2), foram *Corchorus aestuans L.*, com densidade relativa de 4,47%, frequência relativa 8,06% e dominância relativa de 33,3%; *Eleusine indica* com densidade relativa de 21,3%, frequência relativa 8,06% e dominância relativa 4,902%; e *Echinochloa crus-pavonis (Kunth) Schult*, com densidade relativa de 17,4%, frequência relativa 9,68% e dominância relativa 6,798%.

Tabela 2 - Número de presença em quadrados (NQ), número de indivíduos (NI), densidade relativa (Dr.R) frequência relativa(Fr.R),),dominância relativa(Do.R),Índice de Valor de Importância (IVI) das plantas espontâneas presentes na cultura do mamão, na região do Cerrado maranhense, no município de Governador Edson Lobão,2023.

Espécie		NQ	DeR	Fr.R	Do.R	o.R IVI
Especie	ND	140	(%)	(%)	(%)	1 V 1
Corchorus aestuans L.	12	3	4,47	8,06	33,3	45,838
Eleusine indica	5	4	21,3	8,06	4,902	34,282
Echinochloa crus-pavonis (Kunth) Schult	10	5	17,4	9,68	6,798	33,844
Borreria palustris (Cham. & Schltdl.) Bacigalupo & E. L. Cabral	8	1	3,68	8,06	10,37	22,115
Richardia brasilensis	40	4	10,5	6,45	1,667	18,645
Amarathus viridis	81	5	3,16	4,84	7,355	15,352
Turnera melochioides Cambess.	10	1	2,63	8,06	4,618	15,314
Cyperus aggregatus (Willd.) Endl.	2	1	3,16	6,45	3,63	13,239
Cyrtococcum patens (L.) A.Camus	12	4	5, 53	3,23	4,244	12,996
Kyllinga brevifolia Rottb.	17	5	6,58	3,23	0,814	10,618
Commelina benghalensis	11	3	2,89	4,84	2,451	10,184
Triumfetta rhomboidea	14	5	0,26	1,61	7,21	9,0858
Phyllanthus niruri	66	6	1,32	6,45	0,713	8,48
Megathyrsus maximus (Jacq.) B. K. Simon & S. W. L. Jacobs	2	1	3,68	1,61	2,836	8,1327
Pycreus polystachyos (Rottb.) P. Beauv	25	2	3,68	1,61	0,853	6,1503
Scleria mitis P.J. Bergiua	1	1	2,63	1,61	0,518	4,7623
Euphorbia hirta	1	1	2,11	1,61	0,575	4,2927
Senna obtusifolia (L.) H. S. Irwin & Barneby	14	1	0,53	1,61	1,859	3,9984
Bidens pilosa L.	2	1	0,53	1,61	1,81	3,9491
Cyperus rotundusL.	2	1	1,32	1,61	0,994	3,9224
vallisneria americana	2	1	0,53	1,61	0,718	2,8567
Tradescantia fluminensis Vell.	2	1	0,53	1,61	0,616	2,7556
Cyperus virens Michx	21	2	0,53	1,61	0,513	2,6521
Cyperus iriaL.	5	1	0,53	1,61	0,195	2,334
Amaranthus blitum L.	1	1	0,26	1,61	0,296	2,1719
Cyperus esculentusL.	14	1	0,26	1,61	0,153	2,0289
Total	380		100	100	100	300

No levantamento realizado as espécies que apresentaram os maiores IVI foram: Corchorus aestuans com 45,828%, Eleusine indica com 34,282%, Echinochloa crus-pavonis 33,844% e Borreria palustris com 22,115%. Algumas espécies, como Amarathus viridis e Triumfetta rhomboidea, tiveram concentrações de indivíduos em áreas especificas, o que resultou em frequência relativa baixa de 4,84% e 1,61%, mas de dominância relativa alta de 7,355% e 7,21%, respectivamente.

Levando em consideração a espécie *Corchorus aestuans L*. que apresentou maior IVI, quando considerada uma planta espontânea, pode trazer alguns efeitos negativos em determinados contextos. Como uma espécie de crescimento rápido e resistente, ela pode competir por recursos, como nutrientes e luz solar, com outras plantas cultivadas, reduzindo sua produtividade. Além disso, suas raízes profundas e extensas podem dificultar a penetração de água e nutrientes no solo, afetando negativamente o desenvolvimento das culturas desejadas. (BRIGHENTI e OLIVEIRA, 2011).

O manejo de controle de plantas espontâneas na área não afetou negativamente as populações mais relevantes, pois, segundo Pitelli (2000), as espécies indiferentes ou

favorecidas por práticas agrícolas tendem a apresentar percentuais mais elevados. Essas plantas espontâneas ocorreram por todo o período avaliado, apresentando-se com diferentes estádios fenológicos, desde a germinação até a floração e formação de sementes.

Conclusões

Nesse levantamento fitossociológico foram identificadas 26 espécies de plantas espontâneas na cultura do mamão, distribuídas em 13 famílias, com maior destaque para as famílias Cyperaceae e Poaceae.

As espécies que se destacaram em todos os parâmetros fitossociológicos analisados, portanto, as mais importantes, foram *Corchorus aestuans*, *Eleusine indica e Echinochloa crus-pavonis*.

Referências bibliográficas

ALMEIDA, E. I. B. *et al.* **Perdas pós-colheita de frutas e hortaliças no Maranhão**: estimativas, causas, impactos e soluções. São Luís: EDUFMA, 2020. 160 p. ISBN: 978-65-86619-34.

BRIGHENTI, A. M.; OLIVEIRA, F. M. **Biologia e Manejo de Plantas Daninhas** ,2011, 10 p. ISBN 978-85-64619-02-9.

CONUTO, M.P.C. Mamão (carica papaya I.) Liofilizado em pó: avaliação das características físicas, físico-químicas e higroscópicas. Universidade Federal Do Ceará Centro De Ciências Agrárias Departamento De Tecnologia De Alimentos Pós-Graduação Em Ciência E Tecnologia De Alimentos. Fortaleza,2011.

CARVALHO, C. et al. Anuário brasileiro da fruticultura Santa Cruz do Sul: Editora Gazeta Santa Cruz, 2017, 88 p. ISSN 1808-4931 1.

PINTO FILHO, J. L. O.; GONÇALVES, G. L.; LUNES, A. R. S. Caracterização socioeconômica e ambiental da população das comunidades rurais da Chapada do Apodi/RN. Revista Geosul, v. 34, p. 687-712, 2019.

PITELLI, R. A. Competição e controle das plantas daninhas em áreas agrícolas. **Série Técnica IPEF**, Piracicaba, v.4, n.12, p.1 – 24,1987.

PITELLI, R. A. Estudos fitossociológicos em comunidades infestantes de agroecossistemas. **Jornal Consherb**. v.1, n.2, p.1-7, 2000.

SANTOS, G. A.; LIMA, J. T. G. P.; SOUZA JÚNIOR, A. A. Análise da variação da área produtiva de cacau (*Theobroma cacau*) no estado de Rondônia: uma abordagem socioambiental. **In:** Simpósio de Engenharia de Produção, XXV. Bauru/SP, 2018.

VIDAL, M. D. F. Agropecuária: fruticultura. **Caderno Setorial ETENE**, ano 7, n.228, Banco do Nordeste, 2022.