

Formigas e sistemas agroecológicos

Ants and agroecology systems

SILVA, Tainá Pedroso¹; LADEIA, Sarah Cavalari²; OLIVEIRA JUNIOR, Ernandes de Oliveira³; SANTOS, Milaine Fernandes⁴

^{1,4} Departamento de Ciências Biológicas - Universidade do Estado de Mato Grosso, taina.silva@unemat.br; milaine.fernandes@unemat.br; ^{2,3} Pós-Graduação em Ciências Ambientais - Universidade do Estado de Mato Grosso, sarinha.ladeia@gmail.com; ernandes.sobreira@gmail.com

RESUMO EXPANDIDO

Eixo Temático: Manejo de Agroecossistemas

Resumo: A conservação da biodiversidade é fundamental para a manutenção de atividades econômicas, com base em um modelo de produção sustentável. Nessa perspectiva, as formigas são fundamentais por proverem serviços ecológicos essenciais, como a dispersão de sementes, polinização e predação. O objetivo dessa pesquisa foi analisar a riqueza e abundância de gêneros de formigas encontrados em sistemas produtivos e vegetação nativa, e sua contribuição para os sistemas agroecológicos. As coletas de formigas foram realizadas em janeiro e abril de 2023, utilizando armadilhas de queda (pitfall). Ao todo, foram amostrados 1795 indivíduos distribuídos em 9 gêneros. Áreas de piscicultura (657) ou próximas a ela (585) apresentaram a maior abundância de formigas, sendo o gênero Dorymyrmex o mais ocorrente. Dorymyrmex inclui espécies generalistas, tolerantes à luminosidade, sendo algumas consideradas dispersoras de sementes e predadoras.

Palavras-chave: diversidade biológica; formicidae; serviços ecológicos; sistemas agroecológicos

Introdução

As formigas representam o grupo de insetos mais abundante e diverso do planeta, com ampla distribuição geográfica (BACCARO et al., 2015; COLEMAN & WALL, 2015). Esses insetos desempenham importante papel ecológico na natureza, atuando na predação, dispersão de sementes, decomposição e reciclagem de nutrientes (GULLAN & CRANSTON, 2017). Dessa maneira, é fundamental a conservação de formigas em sistemas de produção, a fim de contribuir com a manutenção dos serviços ecológicos associados. De acordo com Carvalho et al., (2021), sistemas conservacionistas tendem a abrigar maior riqueza e diversidade de assembleias de formigas. Em áreas nativas, sabe-se que mudanças na paisagem podem resultar em alterações na abundância, riqueza e composição das comunidades de formigas (KUCHENBECKER; CUEVAS-REYES; FAGUNDES, 2022; PRZYBYSZEWSKI et al., 2022). No entanto, estudos que explorem a relação entre a diversidade de formigas e modelos de produção sustentáveis são escassos na região. Aqui, nosso objetivo foi analisar a riqueza e abundância de gêneros de formigas encontrados em sistemas produtivos (área de piscicultura e pastagem) e

vegetação nativa (área de cachoeira e mata de galeria). E associar a riqueza e abundância de gêneros de formigas com os modelos de produção sustentáveis.

Metodologia

O estudo sobre as formigas foi realizado em Cáceres-MT. O município de Cáceres está localizado na região sudoeste de Mato Grosso, entre as latitudes 15° 27' e 17° 37' sul e as longitudes 57° 00' e 58° 48' oeste, e compreende uma área de 24.398,399 km² (IBGE, 2002), a uma altitude de 118 m. Cáceres integra a mesorregião do Centro-Sul matogrossense e a microrregião do Alto Pantanal, distando 215 km da capital. O clima, segundo classificação de Köppen, é tropical quente e úmido, com inverno seco (Awa).

As coletas foram realizadas nos meses de janeiro e abril de 2023. Ao todo, 100 armadilhas de queda (tipo pitfall) foram instaladas em cinco pontos: Área de psicultura (ponto 1), borda de vegetação da área de psicultura (ponto 2), Mata de galeria (ponto 3), área de cachoeira (ponto 4) e pastagem (ponto 5). Os pitfalls foram confeccionados com potes plásticos de 300 ml. Para cada local foram instalados 10 pitfalls, distantes entre si por um 1 metro. Em cada pitfall foram adicionados 150 ml de água e 5 gotas de detergente neutro para quebrar a tensão superficial da água. As formigas foram coletadas após 48 horas e acondicionadas em álcool 70% para triagem e identificação taxonômica utilizando microscópio estereoscópico e guias para a identificação de gêneros de formigas, sendo posteriormente confirmados por especialista da Universidade Federal de Viçosa.

Figura 1. Instalação das armadilhas do tipo pitfalls para amostragem de formigas no bioma Pantanal, município de Cáceres-MT.

O modelo estatístico analisou o número de formigas por gênero em função do local de coleta (P1, P2, P3, P4, P5) por meio de um teste de verificação dos dados a diferentes funções de distribuição de erros e para variável resposta discreta (abundância de formigas dos 9 gêneros identificados). Para isso, utilizamos as

distribuições de modelos lineares generalizados de Poisson, Quasipoisson e Binomial Negativa. A abundância total de formigas em função dos locais de amostragem também foi analisada de maneira similar. A sobre dispersão, gráficos de Q-Q plot e AIC de cada modelo foram avaliados, sendo utilizado o modelo de distribuição que mais se ajustou.

Resultados e Discussão

Ao todo, foram amostrados 1795 indivíduos distribuídos em 9 gêneros sendo eles: Dorymyrmex sp., Pogonomyrmex sp., Acromyrmex sp., Ectatomma sp., Odontomachus sp., Camponotus sp., Cephalotes sp., Pseudomyrmex sp., Labidus sp., e dois espécimes pertencentes às famílias Dolichoderinae e Myrmicinae (Tabela 1).

Tabela 1. Distribuição dos espécimes amostrados nos cinco pontos de coletas no bioma Pantanal, Cáceres-MT

Local	Abundância	Riqueza (Gênero)
Área de psicultura	657	Dorymyrmex
		Camponotus
		Myrmicinae
		Acromyrmex
		Pogonomyrmex
		Ectatomma
Borda de vegetação nativa próxima a piscicultura	585	Pogonomyrmex
		Dorymyrmex
		Pseudomyrmex
		Acromyrmex
		Ectatomma
		Odontomachus
		Camponotus
		Labidus
Mata de galeria	239	Dorymyrmex
		Pogonomyrmex
		Acromyrmex
		Ectatomma
		Odontomachus e
		Dolichoderinae
Área de Cachoeira	114	Ectatomma
		Camponotus
		Dorymyrmex
		Acromyrmex
		Pogonomyrmex
		Odontomachus
		Cephalotes

		Ectatomma
		Acromyrmex
		Dorymyrmex
Pastagem	200	Pogonomyrmex
		Odontomachus
		Camponotus
		Pseudomyrmex
Total	1795	•

A maior abundância total de formigas em relação aos locais de coleta foi encontrada na borda da área de vegetação/piscicultura (média de 16,8 indivíduos em janeiro/2023 e 14,8 indivíduos em abril/2023) (X2=53,9; GL=202; p=1.976e-08 ***), seguido pela área de piscicultura (média de 8,4 em janeiro/2023 e 11,1 em abril/2023), mata de galeria (média de 10 em janeiro/2023 e 7,21 em abril/2023), pastagem (média de 7,83 formigas em janeiro/2023 e 5,46 em abril/2023), e por fim a área de cachoeira (média 2,62 em janeiro/2023 e 2,66 em abril/2023). Não encontramos diferenças estatísticas para a riqueza de gêneros de formigas entre os cinco locais investigados (X2=6.5606; GL=77; p=0,1684).Trabalhos anteriores demonstraram que a diversidade de formigas na vegetação pode ser positiva ou negativamente afetados pela fragmentação dos habitats (RIBAS et al. 2003; CUISSI et al. 2015).

De acordo com Nunes (2016), as bases para uma piscicultura agroecológica estão no redesenho do agroecossistema, na aproximação da reprodução de sistemas naturais, priorizando a integração e as relações entre os subsistemas e utilizando o policultivo de espécies. Além disso, práticas agroecológicas em áreas com pastagem contribuem com o aumento na diversidade de plantas e consequentemente aumento na qualidade do solo, o que ocorre provavelmente devido à maior cobertura de serapilheira do solo e à heterogeneidade estrutural da planta (TEIXEIRA et al., 2021).

Em relação à abundância por gênero de formigas nos locais de amostragem, foram encontradas diferenças estatísticas para os gêneros *Acromyrmex* (X2=18,5; GL=5; p=0.0009), *Dorymyrmex* (X2=19,57; GL=5; p=0.0006071) e *Pogonomyrmex* (X2=20,9; GL=3; p=0.00032). Entretanto, para os gêneros *Camponotus* (X2=14,1; GL=3; p=0,366), *Ectatomma* (X2=0.19998; GL=4; p=0.9953) e *Odontomachus* (X2=5,26; GL=1; p=0.8671) não houve diferença na abundância de indivíduos nos locais investigados.

A maior média de formigas do gênero *Acromyrmex* foi encontrada na Mata de galeria (51,5), seguido pela pastagem (10,5), área de piscicultura (10), área de cachoeira (6), borda de vegetação nativa próxima a piscicultura (2,5). *Acromyrmex* é composto por formigas consideradas pragas agrícolas, que constroem ninhos subterrâneos e usam folhas e outras partes vegetais para cultivar fungos que servem de alimento para a colônia (BACCARO, 2015).

A maior média de formigas do gênero Pogonomyrmex foi encontrada na área de piscicultura (77), seguido pela borda de vegetação nativa próxima a piscicultura (19), pastagem (9), área de cachoeira (2) e mata de galeria (1). Pogonomyrmex é composto por formigas predominantemente granívoras, mas que podem ser amplamente generalistas de acordo com as condições locais (BACCARO, 2015).

A maior média de formigas do gênero *Dorymyrmex* foi encontrada na área de piscicultura (258), seguido pela borda de vegetação nativa próxima a piscicultura (191), pastagem (71), mata de galeria (55) e área de cachoeira (29,5). *Dorymyrmex* é composto por formigas muito rápidas que constroem ninhos no solo, preferencialmente em lugares abertos e com pouca cobertura vegetal. E são encontradas com frequência em ambientes antropizados (BACCARO, 2015). *Dorymyrmex* também inclui espécies envolvidas em processos de remoção de sementes (SILVA et al., 2020).

Os gêneros *Cephalotes* e *Labidus* ocorreram em apenas um local de amostragem, sendo o primeiro em área de cachoeira e o segundo gênero na área de borda de vegetação nativa próxima a piscicultura. Formigas dos gêneros *Cephalotes* e *Labidus* geralmente são encontradas em áreas onde a biomassa e serrapilheira são abundantes e de melhor qualidade (SEGAT et al., 2017; CANAL-DAZA & ANDRADE-CASTAÑEDA, 2019). Espécies de *Labidus* estão relacionadas a estabilidade de habitats e tende a diminuir sua ocorrência em áreas mais perturbadas (PALÁCIO & FERNANDEZ, 2003). Por outro lado, formigas do gênero *Pseudomyrmex* foram amostradas somente na borda de vegetação nativa próxima a piscicultura e pastagem. Elementos de paisagem como árvores isoladas são de suma importância para a permanência de espécies de formigas nectarívoras e predadoras em locais de cultivo, como é o caso de *Pseudomyrmex* (GOVE et al., 2005, 2009).

Conclusões

Áreas com piscicultura apresentaram a maior abundância de formigas, entretanto, esse resultado está associado ao gênero *Dorymyrmex*, que compreende formigas generalistas que ocorrem com frequência em ambientes antropizados. *Dorymyrmex* também foi o mais ocorrente na pastagem. A conservação da biodiversidade nos dois sistemas de produção é essencial para que um modelo de produção sustentável seja efetivado a médio e longo prazo.

Referências bibliográficas

BACCARO, F. B. et al. **Guia para os gêneros de formigas no Brasil.** Manaus: Editora INPA, 2015. 388 p

CANAL-DAZA, D;. ANDRADE-CASTAÑEDA, H. Adaptation to Climate Change in Coffee Production Systems in Tolima. **Floresta Ambiente**, 26(3), p.1-8, 2019.

https://doi.org/10.1590/2179-8087.116517

CUISSI, R. G.; LASMAR, C. J.; MORETTI, T. S. et al. Comunidade de formigas em fragmentos naturais do pantanal brasileiro: relação espécie-área e isolamento. *J Insect Conserv*, 19, p. 531–537, 2015. https://doi.org/10.1007/s10841-015-9774-5

COLEMAN, D.; WALL, D. Soil fauna: occurrence, biodiversity, and roles in ecosystem function. In: Paul, E. (Ed.): **Soil microbiology, ecology and biochemistry**. – Academic Press, Boston, MA, pp. 111-149, 2015.

GOVE, A. D.; MAJER, J. D.; RICO-GRAY, V. Methods for conservation outside of formal reserve systems: The case of ants in the seasonally dry tropics of Veracruz, Mexico. **Biological Conservation**, v. 126, n. 3, p. 328-338, 2005.

GOVE, A. D.; MAJER, J. D.; RICO-GRAY, V. Ant assemblages in isolated trees are more sensitive to species loss and replacement than their woodland counterparts. **Basic and Applied Ecology**, v. 10, n. 2, pág. 187-195, 2009.

GULLAN, P.J.; CRANSTON, P.S. **Insetos:** fundamentos da entomologia. 5ª ed. Rio de Janeiro: Rocca, 2017. 441 p.

CARVALHO, J. S. et al. What is the influence of agroecological and conventional crops under ant assemblages? **Anais da Academia Brasileira de Ciencias**, v. 93, p. 1–14, 2021.

KUCHENBECKER, J.; CUEVAS-REYES, P.; FAGUNDES, M. Revista Mexicana de Biodiversidad Community structure of ants (Hymenoptera: Formicidae) in an open habitat: the importance of environmental heterogeneity and interspecific interactions. **Revista Mexicana de Biodiversidad**, v. 93, p. e933900, 2022.

PRZYBYSZEWSKI, K. R. et al. Legal reserves ensure alpha and beta ant diversity in highly modified agricultural landscapes. **Perspectives in Ecology and Conservation**, v. 20, p. 330–337, 2022.

SILVA, G. S. DA et al. Formigas removedoras de sementes apresentam potencial para auxiliar na regeneração de áreas impactadas. **MG Biota**, v. 12, n. 2, p. 44–54, 2020.

TEIXEIRA, H. M. et al. Impact of agroecological management on plant diversity and soil-based ecosystem services in pasture and coffee systems in the Atlantic forest of Brazil. **Agriculture, Ecosystems and Environment**, v. 305, n. May 2020, 2021.