

Precipitação interna e umidade do solo em sistema agroflorestal biodiverso, restauração florestal e *Eucaliptus* sp.

Internal precipitation and soil moisture in a Biodiverse Agroforestry System, Forest Restoration and Eucalyptus sp.

BOGGIANI, Fernando¹; SCALICE, Ana¹; LEÃO, Glória²; CASTAGNOLLI, Lara¹; TONELLO, Kelly³; FRANCO, Fernando³

¹Engenharia Florestal, Universidade Federal de São Carlos, Campus Sorocaba, São Paulo, fsboggiani@estudante.ufscar.br. ²Programa de Pós-graduação em Planejamento e Uso de Recursos Renováveis (PPGPUR), Universidade Federal de São Carlos, Campus Sorocaba São Paulo, Brasil. ³Departamento de Ciências Ambientais (DCA-So), Universidade Federal de São Carlos, Campus Sorocaba, São Paulo, Brasil.

RESUMO EXPANDIDO

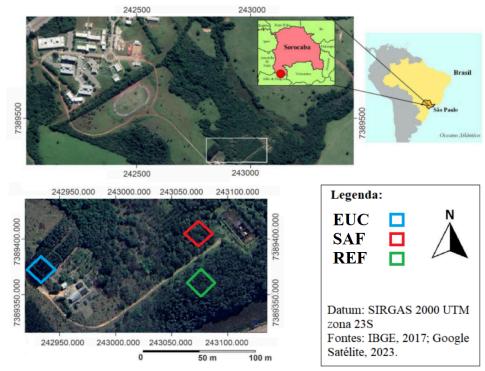
Eixo Temático: Manejo de Agroecossistemas

Resumo: O Sistema Agroflorestal (SAF) é um modelo de práticas conservacionistas do solo, permitindo maior interação entre as espécies e aumento na biodiversidade. Apesar de algumas relações entre os parâmetros físicos dos solos terem seu conhecimento científico consolidado, estudos que envolvam a dinâmica do processo em sistemas agroflorestais ainda são incipientes. Neste sentido, a presente proposta teve como objetivo avaliar e relacionar a disponibilidade hídrica de um solo sob diferentes coberturas vegetais, mediante a quantificação de precipitação interna, externa e umidade. Em uma área anteriormente utilizada como pasto e, posteriormente, substituída por três usos diferentes: *Eucalyptus* sp (EUC), Sistema Agroflorestal Biodiverso (SAF) e Restauração florestal (RES). A precipitação interna nos tratamentos foi menor em relação a precipitação externa nos meses mais quentes. As taxas de umidade permaneceram constantes nos meses de menor precipitação, indicando alta retenção de água no solo em todas as coberturas vegetais.

Palavras-chave: agrofloresta, hidrologia florestal, agroecossistemas, restauração de áreas degradadas.

Introdução

Solos com cobertura florestal são especialmente benéficos, pois apresentam uma porosidade significativa que facilita a infiltração e a recarga de aquíferos, ajudando a reduzir o assoreamento dos cursos d'água e a manter a estabilidade do fluxo hídrico (SOUZA et al., 2015; LIMA, 2013). Por sua vez, a ausência da cobertura vegetal e/ou retirada, pela ação antrópica, ocasiona impactos ao meio ambiente, destacando-se a desregulação dos serviços do ecossistema florestal (TOIVIO et al., 2017). Segundo Sun et al. (2006), a recuperação florestal pode promover a cobertura do solo, aumentar a interceptação da chuva, reter água na floresta, reduzir a erosão do solo e a perda de nutrientes.


A implementação de Sistemas Agroflorestais (SAFs) desempenha um papel crucial na conservação das propriedades hídricas do solo, promovendo coberturas vegetais produtivas em equilíbrio com a restauração florestal. A diversidade de

interações entre espécies em um SAF proporciona proteção contra a radiação solar direta, aumento na precipitação interna, redução da compactação e oscilação térmica no solo (OLIVEIRA, 2006). Afinal, a recuperação florestal envolve não apenas o estabelecimento da floresta, mas também a recuperação do solo anteriormente degradado. Neste sentido, o estudo visa caracterizar a precipitação interna, precipitação externa e umidade do solo nas diferentes coberturas vegetais a fim de avaliar a recuperação das propriedades do solo.

Metodologia

A área de estudo é pertencente à Universidade Federal de São Carlos – Campus Sorocaba, localizada no km 110 da Rodovia João Leme dos Santos, Sorocaba - SP. A região é formada pela transição de Mata Atlântica e Cerrado, caracterizada como Floresta Estacional Semidecidual. O município possui clima temperado úmido com inverno seco e verão quente, clima predominante Cwa, temperaturas anuais entre 10 a 29,6°C, e precipitação pluvial média de 1260,9 mm por ano (DUBREUIL et al., 2017).

Figura 1. Localização dos tratamentos na área de estudo. *Eucalyptus* sp. (EUC), Sistema Agroflorestal Biodiverso (SAF) e Restauração Florestal (RES).

O estudo foi conduzido nas áreas experimentais de solo anteriormente degradado, em três talhões com as seguintes coberturas vegetais: EUC: *Eucalyptus* sp. (aproximadamente 1.667 ind ha⁻¹ - 6 anos); SAF: Sistema Agroflorestal Biodiverso incluindo árvores da Mata Atlântica, *Musa* spp e algumas espécies leguminosas de adubação verde como *Cajanus cajan*, *Canavalia ensiformis* e *Crotalaria juncea*,

com controle de espécies exóticas (Brachiaria sp.) por capina (estabelecida há 7 anos), e REF: Restauração florestal incluindo espécies arbóreas da Mata Atlântica e do Cerrado (aproximadamente 1.667 ind ha⁻¹ – 10 anos) (Figura 1). Em cada talhão foram instaladas parcelas de 20 x 20m, com monitoramento mensal da precipitação externa, precipitação interna e umidade no período de dezembro de 2020 a novembro de 2021, com quatro repetições por tratamento.

Precipitação

Os dados de precipitação externa foram obtidos pela Estação Meteorológica próxima a área de pesquisa. Para a precipitação interna, foram instalados 4 pluviômetros por tratamento à 1,30 m do solo com área de 78,54cm². A precipitação interna será obtida pela seguinte equação:

$$Tf = \sum_{ni}^{x} \frac{\left[\frac{V}{A}x10\right]}{ni} \tag{1}$$

Tf: precipitação interna (mm); V: volume de água no pluviômetro (mL); A: área de captação de cada pluviômetro (cm²); ni: número de pluviômetros.

Umidade do Solo (US)

Os dados de umidade mensais do solo foram obtidos na profundidade de 0-20cm, com anéis volumétricos metálicos de 100cm³ para obtenção de amostras não deformadas e seu peso obtido em balança de precisão (DONAGEMA, 2011). A taxa de umidade do solo foi obtida pela pesagem da massa fresca recém-coletada e seca após 24 horas em estufa de circulação forçada de 105°C a 110°C (Equação 2).

$$US(\%) = \frac{Mu - Ms}{Ms} \times 100 \tag{2}$$

US (%): Umidade do solo, em %; Mu: Massa de solo úmida, em gramas; Ms: Massa de solo seca, em gramas.

Análises estatísticas.

A análise de dados foi realizada no software R (R Development Core Team 2016) com análise de variância (ANOVA) e teste de Tukey a 5% de probabilidade.

Resultados e Discussão

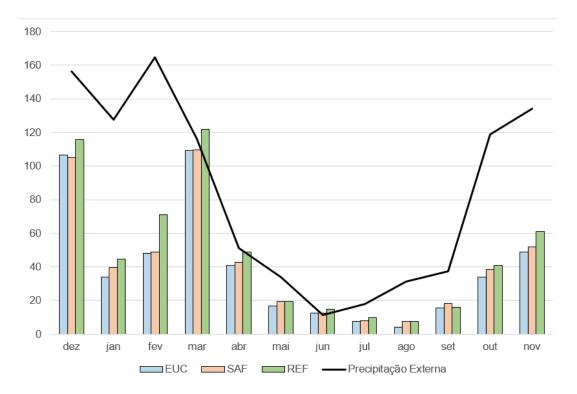

Os valores de precipitação interna e umidade no solo em EUC, SAF e RES foram semelhantes ao longo de todos os meses. A precipitação externa total no período de 12 meses para a área de estudo foi de 1001 mm, 478 mm para EUC, 503 mm para SAF e 572 mm para REF (Tabela 1).

Tabela 1. Precipitação externa (mm) e precipitação interna (mm) em *Eucalyptus* sp. (EUC), Sistema Agroflorestal Biodiverso (SAF) e Restauração Florestal (REF).

Precipitação (mm)												
	dez	jan	fev	mar	abr	mai	jun	jul	ago	set	out	nov
P. Externa	156,2	127,8	164,6	116	51	34	11,4	18	31,2	37,4	119	134
EUC	106,4	34	48,2	109,1	41	16,6	12,7	7,6	4,2	15,7	34	49
SAF	105	39,7	49	109,7	42,9	19,5	12,5	8,1	7,6	18,2	38,5	52
RES	115,8	44,8	71,1	121,8	49	19,5	14,9	10	7,6	16,1	41	61

A precipitação interna em todas as coberturas vegetais foram inferiores a precipitação externa (figura 1), com menor acúmulo de água nos pluviômetros nos meses mais quentes, exceto no mês de março devido a maior frequência de chuvas no mês.

Figura 1. Precipitação externa (mm) e precipitação interna (mm) em em *Eucalyptus* sp. (EUC), Sistema Agroflorestal Biodiverso (SAF) e Restauração Florestal (REF).

O percentual de umidade foi mais elevado nos meses com maior precipitação, em destaque para o mês de janeiro (tabela 2.) com percentual médio de 40,27% em REF, 36,59% (SAF) e 34,05% (EUC). Nos meses de abril a setembro (Figura 2.), a umidade do solo se manteve constante, indicando a capacidade de retenção hídrica em todas as coberturas vegetais, mesmo no período de menor precipitação (junho).

Tabela 2. Taxa de umidade (%) em *Eucalyptus* sp. (EUC), Sistema Agroflorestal Biodiverso (SAF) e Restauração Florestal (REF).

UMIDADE (%)												
	dez	jan	fev	mar	abr	mai	jun	jul	ago	set	out	nov
EUC	13,45	34,05	12,48	14,26	15,76	12,80	14,86	15,12	11,32	13,66	15,70	11,54
SAF	22,34	36,59	18,27	15,70	16,04	12,74	12,71	16,22	13,31	16,06	18,65	19,16
RES	23,62	40,27	25,91	16,27	17,99	15,98	14,82	17,75	16,74	20,20	28,60	20,26
45%												180
40%	_		\wedge									160
35%												140
30%				\setminus								120
25%												100
20%				_/					_			- 80
15%												- 60
10%												40
5%												- 20
0%	dez	jan	fev	mar	abr	mai j	un j	ul ag	o set	out	nov	- 0
				EUC =	■SAF	REF	— Pr	ecipitação	Externa			

Figura 2. Precipitação externa (mm) e umidade do solo (%) em em *Eucalyptus* sp. (EUC), Sistema Agroflorestal Biodiverso (SAF) e Restauração Florestal (REF).

Conclusões

A REF apresentou maiores taxas de umidade no solo e precipitação interna no decorrer dos meses, seguida por SAF e EUC. A precipitação interna nos tratamentos foi menor nos meses mais quentes. A umidade do solo permaneceu constante nos meses de menor precipitação em SAF, EUC e RES.

Referências bibliográficas

DONAGEMA, Guilherme K. Manual de métodos de análise de solo. Embrapa Solos, Rio de Janeiro. 2009.

LIMA, Camila C.; SILVA, Reginaldo B.; Qualidade Física e Estrutural de Cambissolos sob Cultivo de Banana em APP da Sub-bacia Ribeira de Iguape. **XXXIV Congresso Brasileiro de Ciência do Solo** - Vol. 4, 2013.

OLIVEIRA, Sampaio A. **Qualidade do solo em Sistemas Agroflorestais em Alta Floresta-MT**. Tese (Mestrado Solos e Nutrição de plantas) — Universidade Federal de Viçosa, Viçosa, MG, f. 43-50, 2006.

SOUZA, Fábio H. M.; PATRIOTA, Jéssica N. Atributos físicos do solo em diferentes coberturas florestais. **Amaz. Ciência Desenvolvimento**. 11:1-14, 2015.

SUN, Ge, ZHOU, Guoyi; ZHANG, Zhigiang. Potential water yield reduction due to forestation across China. **Journal Hydrology**, 328:548–558, 2006.

TOIVIO, JENNY H. Impacts of timber forwarding on physical properties of forest soils in southern Finland. **Ecology Manage**, 405:22–30, 2017.