

Plantas de cobertura do solo na produção de fitomassa e supressão de plantas espontâneas, em sistema de plantio direto agroecológico Performance of ground cover plants in phytomass production and weeds suppression in no-tillage system

BITTENCOURT, Arthur de Melo Barbosa¹; SILVA, Juscélia Conceição da¹; TRINDADE, David Santiaro Praes¹; SILVA, André Marcos da; BASTIANI, Marcos Luiz Rebouças³

¹ Discente do Bacharelado em Agroecologia do ÎF Sudeste MG - Campus Rio pomba, ambbittencourt@gmail.com, jusceliasilvasilva11@gmail.com, davidsantiaro@gmail.com; ² Técnico do Departamento de Agricultura e Ambiente do IF Sudeste MG - Campus Rio Pomba, andre.ifetrp@gmail.com; ³Docente do Bacharelado em Agroecologia do IF Sudeste MG - Campus Rio Pomba, marcos.bastiani@ifsudestemg.edu.br

RESUMO EXPANDIDO

Eixo Temático: Manejo de agroecossistemas.

Resumo: O manejo da vegetação espontânea é um desafio para os agroecossistemas. A convivência com tais plantas pode gerar reduções significativas de produtividade pela competição por recursos ou pela hospedagem de organismos praga. Objetivou-se com esse trabalho avaliar o potencial de supressão da vegetação espontânea exercido por plantas de cobertura do solo, em áreas de cultivo agrícola. O experimento foi conduzido no IF Sudeste MG - Campus Rio Pomba. Foram utilizadas em sistema de sucessão, as coberturas de milheto, crotalária, mucuna preta e mucuna cinza, tendo sido avaliadas a produção de fitomassa das plantas de cobertura e de plantas espontâneas, além dos índices de infestação e também a cobertura do solo. Foi observada uma redução significativa dos índices avaliados, principalmente na presença de resíduos culturais das mucunas preta e cinza, demonstrando a eficiência do manejo de sucessão para o manejo de plantas espontâneas em sistemas agroecológicos.

Palavras-chave: adubos verdes; plantio direto; manejo agroecológico.

Introdução

O manejo da vegetação espontânea em sistemas agroecológicos apresenta desafios relacionados com as características desses sistemas produtivos, entre eles a sustentabilidade ambiental. Espécies infestantes são favorecidas pelo revolvimento do solo, irrigação diária e pelo grande aporte de adubos (RONCHI et al., 2015). A convivência com essas plantas causam perdas na produtividade (CUNHA et al., 2015; GIANCOTTI et al., 2010) e favorece a presença de organismos nocivos quando não manejados na entressafra (RAMOS et al., 2019).

Uma das formas de mitigar os impactos causados pela vegetação espontânea seria a implantação de sistemas de plantio direto sobre resíduos culturais (SPDP). Altieri et al (2012), relatam que o uso de plantas de cobertura do solo em SPD orgânico é

capaz de suprimir a comunidade espontânea, além de contribuir com a nutrição das culturas agrícolas e melhorar parâmetros de qualidade do solo.

O uso de plantas de cobertura em pré-cultivos e rotação de culturas, contribui no manejo da vegetação espontânea pela formação de uma barreira física, pela inibição da chegada da luz solar ao solo e também, pela modificação na dinâmica da temperatura e água do solo (ALTIERI et al., 2012). A supressão, na presença dos resíduos culturais, também pode ocorrer pela alelopatia, que é a liberação de compostos químicos a partir dos tecidos vegetais (AGOSTINETTO et al., 2015). Estes fatores contribuem para a redução ou até a dispensa do uso de herbicidas em sistemas agrícolas de sucessão (ALTIERI et al., 2012).

O objetivo deste trabalho foi avaliar o desempenho de plantas de cobertura do solo na supressão da vegetação espontânea em sistema de plantio direto agroecológico.

Metodologia

O trabalho foi implantado no Departamento de Agricultura e Ambiente (DAAA) do Instituto Federal do Sudeste de Minas Gerais - Campus Rio Pomba, na mesorregião da Zona da Mata, altitude de 450 metros. O clima local é do tipo Cwa, temperado quente, com período seco no inverno, segundo a classificação de Koppen (MARTINS et. al., 2021). O solo da área experimental é classificado como Argissolo Vermelho-Amarelo, sendo que o local está em transição agroecológica desde 2008.

Neste trabalho foi utilizado o delineamento em blocos casualizados com 4 repetições, sendo os tratamentos compostos das seguintes plantas de cobertura do solo: milheto (*Pennisetum glaucum*), crotalaria (*Crotalaria juncea*), mucuna-preta (*Mucuna pruriens*), mucuna-cinza (*Mucuna pruriens*) e a testemunha, constituída de área em pousio. As plantas de cobertura foram semeadas seguindo as recomendações para cada espécie.

Para avaliação das culturas de cobertura foram coletadas a parte aérea das plantas presentes no intervalo de 0,50 m numa linha central de plantio, com o corte feito rente ao solo. Após a coleta, as amostras foram secas em estufa de circulação de ar a 65°C por 72 horas até atingirem peso constante para a determinação da fitomassa seca. O corte das plantas de cobertura foi feito 80 dias após a semeadura (DAS) com uma roçadeira costal, sendo os restos culturais deixados sobre o solo.

A determinação da fitomassa fresca da vegetação espontânea foi realizada aos 30 dias após o corte das espécies de cobertura. Foi utilizado um quadro de 0,25 x 0,25 m e as plantas presentes no mesmo, foram colhidas rente ao solo para posterior pesagem e foram contadas para a obtenção da densidade. Após a determinação da fitomassa fresca, a fitomassa seca foi determinada conforme descrito acima. Também foi quantificado o percentual de infestação e de cobertura do solo por meio de fotografias tiradas a 1 m da superfície conforme metodologia proposta por Lima et al. (2010).

Os procedimentos estatísticos constaram de análise de variância com aplicação do "Teste F" e comparação entre as médias pelo Teste de Tukey a 5% de significância, com auxílio do software estatístico "SISVAR", versão 5.6.

Resultados e Discussão

Os resultados estão expostos na tabela 1. O milheto produziu a maior quantidade de fitomassa. Observando a produção de fitomassa fresca da vegetação espontânea, as mucunas obtiveram as menores produções, seguidas pela crotalária e milheto. Já para fitomassa seca de espontâneas, as maiores produções foram observadas para crotalária e milheto, sendo que a crotalária e a mucuna preta não diferiram e a mucuna cinza superior a crotalária. O percentual de cobertura do solo aos 30 dias foi maior pela presença dos resíduos culturais das mucunas, seguido pela crotalária e milheto. Considerando a infestação da vegetação espontânea, essa foi maior nas áreas com crotalária e milheto. Na presença de resíduos culturais das mucunas, ocorreram as menores infestações. Já a densidade de plantas espontâneas não diferiu entre os tratamentos com as diferentes espécies de cobertura do solo.

Tabela 1. Fitomassa seca de plantas de cobertura, fitomassa fresca e seca de plantas espontânea, densidade e percentual de infestação de plantas espontâneas e percentual de cobertura do solo com resíduos culturais de plantas de cobertura, aos 30 dias após o corte destas espécies.

Tratamento	MS¹ cobertura (t/ha)	MF² espontânea s (t/ha)	MS¹ espontânea s (kg/ha)	Densidade (plantas/m²)	Cobertura (%)	Infestação (%)
Mucuna Preta	4.63b	3.92ab	485.25ab	164.00a	84.28c	15.70a
Mucuna Cinza	3.53b	3.15a	350.65a	146.00a	82.78c	17.22ab
Crotalária	4.79b	6.70bc	583.20bc	256.00a	41.46b	58.54c
Milheto	7.28c	7.40c	727.20c	244.00a	45.94b	54.06bc
Testemunha	0.00a	15.30d	1401.87d	1248.00b	0.00a	87.79c
% CV	25.72	16.95	12.13	47.95	31.35	35.01

Médias seguidas pela mesma letra nas colunas não diferem entre si pelo teste de Tukey (P<0,05).

Um fator importante para a eficiência de plantas de cobertura na supressão da vegetação espontânea é a elevada produção de fitomassa (HIRATA et al., 2014). Relatos citam que espécies de cobertura do solo devem produzir uma quantidade

^{1 -} Matéria seca; 2 - Matéria fresca

mínima de 4,0 t/ha de fitomassa seca para que a inibição na emergência da vegetação espontânea seja efetiva (SILVA et al., 2016).

Apesar disso, o milheto foi inferior na supressão da vegetação espontânea em relação às duas espécies de mucuna (Tabela 1), mesmo com elevada produção de fitomassa seca (7,28 t/ha) em relação a essas duas espécies, que produziram 4,63 t/ha e 3,53 t/ha de fitomassa seca. A alelopatia também deve ser considerada como uma forma de ação das plantas de cobertura sobre a vegetação espontânea (AGOSTINETTO et al., 2015). Alguns autores citam que a mucuna preta é uma planta com efetiva ação alelopática sobre espécies importantes como o Bidens pilosa (JÚNIOR et al., 2004) e Cyperus rotundus (ZANUNCIO et al., 2013), o que pode ter relação com o resultado de supressão observado.

Foi observada uma relação direta entre o percentual de cobertura do solo e a redução de fitomassa das plantas espontâneas. Esse resultado sugere que a cobertura residual sobre o solo aos 30 dias após o corte das plantas, foi determinante para o efeito de supressivo sobre a vegetação espontânea. Alguns autores citam que os resíduos culturais formam uma barreira física e de sombreamento, capaz de impedir o desenvolvimento de diferentes espécies de plantas infestantes (AGOSTINETTO et al., 2015; CUNHA et al., 2015; ALTIERI et al., 2012).

Conclusões

A utilização de plantas de cobertura em sistema de plantio direto agroecológico foi eficaz na supressão da vegetação espontânea em áreas de cultivo. Entre as espécies avaliadas, a mucuna cinza obteve os melhores resultados de inibição para a produção de fitomassa de plantas espontâneas, infestação e cobertura do solo. Já a mucuna preta foi mais efetiva na manutenção da cobertura do solo e no controle da infestação.

Agradecimentos

Agradecemos ao Programa de Educação Tutorial (PET), o CNPq e ao PIBIC pelas bolsas concedidas.

Referências bibliográficas

AGOSTINETTO, D. *et al.* Manejo de plantas daninhas. In: In: SEDIYAMA, T. et al. **Soja: do plantio à colheita**. Viçosa, MG: UFV, Cap. 11, p. 234-255, 2015.

ALTIERI, M. et al. AUMENTO DO RENDIMENTO DOS CULTIVOS ATRAVÉS DA SUPRESSÃO DE PLANTAS ESPONTÂNEAS EM SISTEMAS DE PLANTIO

DIRETO ORGÂNICO EM SANTA CATARINA, BRASIL. **Agroecología**, v. 7, p. 63-71, 2012.

CUNHA, J. L. X. L. *et al.* Períodos de interferência de plantas daninhas na cultura do pimentão nos sistemas de plantio direto e convencional. **Revista Agro@ mbiente On-line**, v. 9, n. 2, p. 175-183, 2015.

GIANCOTTI, P. R. F.; *et. al.*. Período total de prevenção a interferência das plantas daninhas na cultura da alface cultivar Solaris. **Semina: Ciências Agrárias**, v. 31, n. 1, p. 1299-1304, 2010.

HIRATA, A. C. S. *et al.* Plantio direto de alface americana sobre plantas de cobertura dessecadas ou roçadas. **Bragantia**, v. 73, p. 178-183, 2014.

JUNIOR, Alvadi Antonio Balbinot. Manejo das plantas daninhas pela alelopatia. **Agropecuária Catarinense**, v. 17, n. 1, p. 61-64, 2004.

LIMA, C.; *et al.* Potencial alelopático de crotalária, feijão-de-porco e gergelim na germinação e desenvolvimento inicial de picão-preto (Bidens pilosa). **Revista Brasileira de Agroecologia**, Guarapari, v. 2, n. 2, p.1175-1178, 2010.

MARTINS, F. B. *et al.* Classificação climática de Köppen e de Thornthwaite para Minas Gerais: cenário atual e projeções futuras. **Revista Brasileira de Climatologia**, 2021.

RAMOS, R. F. *et al.* Plantas daninhas como hospedeiras dos nematoides-das-galhas. **Revista Agronomia Brasileira**, v. 3, n. 1, p. 1-3, 2019.

RONCHI, C.P. *et al.* Manejo de plantas daninhas na cultura do tomateiro. **Planta daninha**, Viçosa, v. 28, n. 1, p. 215-228, 2010.

SILVA, J. B. *et al.* Plantas de cobertura na supressão do crescimento de Amaranthus deflexus. **Revista de Ciências Agrárias Amazonian Journal of Agricultural and Environmental Sciences**, v. 59, n. 3, p. 280-287, 2016.

ZANUNCIO, A. *et al.* Alelopatia de adubos verdes sobre Cyperus rotundus. **Revista de Ciências Agrárias**, v. 36, n. 4, p. 441-446, 2013.